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Analysis and Implementation of an Implicitly
Restarted Arnoldi Iteration

R. B. Lehoucq

Abstract

The Arnoldi algorithm, or iteration, is a computationally attractive technique for
computing a few eigenvalues and associated invariant subspace of large, often sparse,
matrices. The method is a generalization of the Lanczos process and reduces to
that when the underlying matrix is symmetric. This thesis presents an analysis of
Sorensen’s Implicitly Re-started Arnoldi iteration, (IRA-iteration), by exploiting its
relationship with the QR algorithm. The goal of this thesis is to present numerical
techniques that attempt to make the IRA-iteration as robust as the implicitly shifted
QR algorithm. The benefit is that the Arnoldi iteration only requires the computation
of matrix vector products w = Av at each step. It does not rely on the dense matrix
similarity transformations required by the EISPACK and LAPACK software packages.

Five topics form the contribution of this dissertation. The first topic analyzes
re-starting the Arnoldi iteration in an implicit or explicit manner. The second topic
is the numerical stability of an IRA-iteration. The forward instability of the QR
algorithm and the various schemes used to re-order the Schur form of a matrix are
fundamental to this analysis. A sensitivity analysis of the Hessenberg decomposition is
presented. The practical issues assoclated with maintaining numerical orthogonality
among the Arnoldi/Lanczos basis vectors is the third topic. The fourth topic is
deflation techniques for an IRA-iteration. The deflation strategies introduced make
it possible to compute multiple or clustered eigenvalues with a single vector re-start
method. The block Arnoldi/Lanczos methods commonly used are not required. The
final topic is the convergence typical of an IRA-iteration. Both formal theory and
heuristics are provided for making choices that will lead to improved convergence of

an IRA-iteration.
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Chapter 1

Introduction

Many scientific and engineering problems lead to the matrix eigenvalue problem
(1.0.1) Ax = MBu,

where A and B are real matrices of order n. The matrix B, when it arises, is usually
symmetric positive semi-definite. In many situations B = I, the identity matrix, and
this is the case assumed unless stated otherwise. For the remainder of the thesis,
we suppose that A is nonsymmetric and real with standard simplifications when the
matrix is symmetric.

This thesis examines a promising variant of Arnoldi’s method [3] for computing
approximations to a few eigenpairs (x,A) of A. The Arnoldi method is an efficient
procedure for approximating a subset of the eigensystem for a large, often sparse,
matrix A. The method is a generalization of the Lanczos process [46] and reduces
to that when A is symmetric. The process, sequential in nature, produces an upper
Hessenberg matrix Hy of order k at the k-th step. The eigenvalues of Hy are used
to approximate a few of the eigenvalues of A. Excellent approximations to some of
the eigenvalues often appear for values of k significantly smaller than the order of
the matrix. The iteration only requires the computation of a matrix vector product
w = Awv at each step. It does not rely on the dense matrix similarity transformations
required by EISPACK [82] and LAPACK [1].

There are a number of numerical difficulties with Arnoldi/Lanczos methods. These

include:
e Maintaining the orthogonality of the Arnoldi/Lanczos basis vectors.
e Reducing the storage requirements of the methods.
e The computation of multiple and clustered eigenvalues of A.

e Convergence to a selected group of eigenvalues of A.



e Handling spurious eigenvalues when orthogonality is not enforced.

Each of these issues is considered in detail during the course of the thesis. Over
a decade of research has been devoted to understanding and overcoming the nu-
merical difficulties of the Lanczos method. The works of Parlett [61], Cullum and
Wiloughby [21] study in detail the many specifics of the Lanczos algorithm, while the
paper by Grimes, Lewis and Simon [39] discusses the design and development of high
quality software.

Development of the Arnoldi method lagged behind due to the inordinate compu-
tational and storage requirements associated with the original method when a large
number of steps are required for convergence. The explicitly re-started Arnoldi it-
eration (ERA-iteration) was introduced by Saad [74] to overcome these difficulties,
based on similar ideas developed for the Lanczos process by Paige [57], Cullum and
Donath [20], and Golub and Underwood [37]. Karush [44] proposes what appears to
be the first example of a re-started iteration.

A relatively recent variant was developed by Sorensen [83] as a more efficient
and numerically stable way to implement restarting. This technique, the Implicitly
Restarted Arnoldi iteration (IRA-iteration), may be viewed as a truncation of the
standard implicitly shifted QR-iteration. This thesis presents an analysis of an IRA-
iteration that exploits its relationship with the implicitly shifted QR algorithm. This
viewpoint provides an alternate approach to study the Arnoldi/Lanczos iterations in
which the power of the QR algorithm is utilized. The immediate impact is the im-
provement of the numerical accuracy and convergence properties of the ARPACK [49]
software package.

The goal of this thesis is to present numerical techniques that are designed to make
the IRA-iteration as robust as the implicitly shifted QR algorithm for dense problems.
These schemes are analyzed with respect to numerical stability and computational

results are presented.

1.1 Organization of the Thesis

The dissertation is organized as follows. Chapter 2 introduces Arnoldi’s method as
well as a few of the many associated fundamentals. The QR algorithm is the subject
of Chapter 3. A connection between the Arnoldi method and the implicitly shifted
QR-iteration is established that is exploited for the remainder of the thesis. The idea

of re-starting an Arnoldi iteration is examined in Chapter 4. The IRA-iteration is



introduced and a comparison between implicitly and explicitly re-starting an Arnoldi
iteration is drawn. Chapter 5 examines the numerical stability of the IRA-iteration by
considering the stability of a Hessenberg decomposition. Connections are made with
the concept of the forward instability of the QR algorithm, re-orthogonalization meth-
ods and the various methods used to re-order the Schur form of a matrix. Deflation
techniques for an IRA-iteration are treated in Chapter 6. A numerically stable scheme
is introduced that implicitly deflates the converged approximations from the itera-
tion. Two forms of implicit deflation are presented. Convergence of the iteration
is improved and a reduction in computational effort is also achieved. The deflation
strategies make it possible to compute multiple or clustered eigenvalues with a single
vector restart method. A block method is not required. Maintaining orthogonality of
the Arnoldi basis vectors is considered in Chapter 7. The convergence typical of an
IRA-iteration is the subject of Chapter 8. Both formal theory and heuristics are pro-
vided for making choices that will lead to improved convergence of an IRA-iteration.

Chapter 9 summarizes the dissertation and examines future work.

1.2 Notation and Fundamentals of Matrix Computations

We shall now establish the notation to be used during the course of this thesis.
It is also necessary to review a number of details on the matrix factorizations and
techniques that will be used.

We employ Householder notational conventions. Capital and lower case letters de-
note matrices and vectors, respectively, while lower case Greek letters denote scalars.
The identity matrix in R™*" is denoted by I,, and the subscript is dropped when the
context is clear. The j-th canonical basis vector is denoted by ¢, the j-th column of
the identity matrix. The transpose of a vector x is denoted by 2 and ¥ denotes the
complex conjugate of #T. The norms used are the Euclidean and Frobenius denoted

by || - || and || - ||, respectively. The range of a matrix A is denoted by R(A).

1.2.1 The Real Schur Form

Since we are especially concerned with algorithms that result in robust and efficient
software, the following decomposition is a special case of the more general Schur
decomposition. The special case allows us to compute strictly in real arithmetic. The

proper resolution of complex conjugate pairs of eigenvalues comes from noting that



if A(z +42) = (v + tp)(x + 22) where @ and z are vectors in R™ with g # 0, then

(12) A[“]=[H][” jj};[:,,

_/1,

I

| D..

The following decomposition proves central to the eigenvalue algorithms considered

in this thesis.

Theorem 1.1 (Real Schur Decomposition) If A € R™*™ then there

exists an orthogonal () € R"*" such that

Rll Rl’z o le
0 R -+ R, m

(1.2.2) Q"ag=| . 7 " |=R,
0 0 Tt Rm'm

where each R;; is a square block of order one or two. The blocks of order
two contain the complex conjugate eigenvalues of A. The mnatrix R is said

to be in upper quasi-triangular matrix form.

Proof Sece [35, page 362]. 0

Let C be a quasi-diagonal orthonormal matrix with two by two blocks allowed
only where R has them. Then (QC)TAQC = CTRC has diagonal blocks that are
similar to those of K. Thus, apart from the eigenvalues of multiplicity larger than
one, the decomposition is essentially unique given some ordering of the eigenvalues.
Denote the leading principal matrix of k& blocks of R by Ry where no R;; is split. Let
Qx € R™*F be the corresponding columns of (). Then AQj = Qi Ry is a partial real
Schur decomposition of A of order k. The algorithms of this thesis attempt to compute
a partial Schur decomposition for A with a group of wanted eigenvalues located on
the diagonal blocks of Ry. The k < n eigenvalues of A requiring approximation are
typically contained within some convex set of interest in the complex plane. Examples
include those nearest the origin, and of largest real part. An important exception
might be the dominant eigenvalues of A, those largest in magnitude.

A quasi-diagonal form for A exists if there is a nonsingular matrix X € R"*" such
that AX = XD where D is a block diagonal matrix with each block of order one
or two. The blocks of order two contain the complex conjugate pair of eigenvalues

as in equation (1.2.1) with p positive. The columns of X span the right eigenspace



corresponding to diagonal values of D. For the blocks of order two on the diagonal
of D the corresponding complex eigenvector is stored in two consecutive columns
of X, the first holding the real part, and the second the imaginary part. We also
assume that the columns of X are unit vectors. If we assume that A is diagonal-
izable, the matrix R may be further decomposed [1, 35, 86] as RS = SD where
D = diag( R, Raz, - - -, Rypm) and S € R™ ™ is upper quasi-triangular and nonsingu-

lar. The matrix pair (QS, D) represents a quasi-diagonal form for A.

1.2.2 Elementary Orthonormal Matrices

A real matrix U € R™™ is orthonormal if UTU = I,,. The matrix consisting of any of
the columns of U is called an orthogonal matrix. For example, define Uleq, ..., ex] =
Ur € R**_ and note that UkTUk = [ but UkUE # I, unless k = n. Hence, Uy is
orthogonal for all values of k& but only orthonormal when k& = n.

Givens rotations and Householder reflectors are two important classes of simple
orthonormal matrices that will be used extensively in this thesis. We briefly intro-
duce their fundamentals and refer the reader to the sources [47, 61, 101] for more
comprehensive treatments including their numerically stable implementation.

A Householder reflector is a matrix of the form W = I — 7ww? where 7 =
2(wTw)™" if w # 0. Direct computation yields that W is orthogonal and symmetric
and hence W? = I. If we choose the vector w = w=||z||e; the Householder matrix W is
such that Wz = F||z||e; for « € R". Since W is orthogonal and symmetric it follows
that its first column (and row) contains +x/||«||. The geometrical interpretation of
the transformation effected by W is that it acts as a reflection in the subspace of
dimension n — 1 orthogonal to w.

A Givens rotation G; ; € R"*" acts as a rotation in the plane spanned by ¢; and

e,. The rotation differs from I, only in the (7,¢),(5,7),(2,7) and (J,¢) entries of G ;:

Tt o Ty o,
e; Gijei € Gije; _ g 7
Ter o T o - ’
e; Gijei € (i je; -y o
An example that illustrates their use is to determine scalars v and o so that

the first column of Gy is equal to #a/|x]| for + € R? Equivalently, we solve
&
{2

€2/)|z]| give the required result. Thus, the rotation acts as a matrix transformation

T
G1,2

= *||z|le; and a simple derivation shows that ¢ = —£;/||z| and v =

that rotates R? through a counterclockwise angle ¢ where tan ¢ = —£,/¢;.



If z € R" then we may compute a sequence of Givens rotations so that
vT T T e ol o
(1112(11’3 s (]1,,”_1.1; = :t”l“tl

Note, that unlike the corresponding Householder reflector accomplishing the same
task, the product Gy -y -+ G1,2 is not symmetric. However, since each Givens rota-
tion is orthogonal, the product of them is also, which is the important property.
Returning to the previous example of constructing a Givens rotation so that
G,z = =||z|le; where « € R?, allows us to determine a relationship with the

Householder reflector accomplishing the same task. The relationship is

Giz2 = 07=1 Q 7 751 ,0W7
-y o 0 -1 v —0 0 -1

thus expressing a Givens rotation as a product of two reflectors.

1.2.3 The QR Factorization of Matrix

Given a matrix B € R™*", it will prove useful to be able to factor B into a product
of an orthonormal and upper triangular matrix, respectively. Such a factorization

allows an orthogonal represention of B’s column space.

Theorem 1.2 Suppose that B € R"™*" where mn, the number of rows,
is at least as large as n, the number of columns. If | = rank(B) then there
exist an unique orthogonal matrix Q; € R™*! and an unique nonsingular
upper triangular matrix B, € R'*! with positive diagonal elements such
that

Ry Ry

(1.2.3) B=QR=[Q: Q] N

b

where () € R™*™ is an orthonormal matrix.

Proof See Golub and Van Loan [35, pages 212, 214] for algorithmic derivations
using either Givens rotations or Householder reflectors. i

It follows that R(B) = R(();) thus providing an orthogonal basis for the columns
space of B. The unique factorization B = (J1 Ry results if rank(B) = n and amounts
to performing the Gram-Schmidt process to the columns of B. It is interesting to

note that regardless of whether Givens rotations or Householder reflectors are used to



compute the QR factorization of B, both implementations result in the same (); and
R;. However, the other orthogonal matrix, (02, and consequently R;, are not uniquely
defined. A word of caution: most algorithins computing the QR factorization of a
matrix are only unique up to a scaling of the columns of (J; and the corresponding
rows of Ky by a factor of £1. The reason is that we may always compute a diagonal
matrix D € R™ "™ consisting of only £1 and so that B = QDD 'R is another

orthogonal factorization of B.



Chapter 2

The Arnoldi Method

Arnoldi’s method [3] is an orthogonal projection method for approximating a subset
of the eigensystem of a general square matrix. The method builds, step by step, an

orthogonal basis for the Krylov subspace,
Kin(A,v1) = Span{vy, Avy,..., A" o},

for A generated by the vector vy. The original algorithm proposed was designed to

compute the Hessenberg decomposition
vtav=H UTU =1,

where H is an upper Hessenberg matrix. As this chapter demonstrates, there is an
intimate connection between Krylov subspaces and Hessenberg matrices.

The chapter is organized as follows. Some useful results concerning Hessenberg
matrices are presented in § 2.1. The Arnoldi factorization is introduced in § 2.2.
The Hessenberg decomposition of A using other orthogonal reduction methods is
reviewed in § 2.3. Truncated Arnoldi factorizations which lead to real partial Schur
decompositions are treated in § 2.4. Determining how well an eigenvalue of the
projected matrix H,, approximates an eigenvalue of A is considered in § 2.5. The

convergence properties of Krylov subspaces are briefly reviewed in § 2.6.

2.1 Fundamentals of Hessenberg Matrices

Hessenberg matrices hold a fundamental role for the analysis presented in this thesis.
This section reviews many of their most important properties.
We choose to label the i-th diagonal and sub-diagonal elements of H € R™ " an

Hessenberg matrix, as «; and f£;y,, respectively:

[64]
P2

0 0 8, « |



A Hessenberg matrix is said to be unreduced if all of 1ts sub-diagonal elements are
nonzero. Both the left and right eigenvectors of unreduced upper Hessenberg matrices

possess the following curious properties.

Lemma 2.1 Suppose that H € R"*" is an unreduced upper Hessenberg
matrix. If Hs = s6 with s # 0 and HTu = uf with « # 0 then els # 0
and efu # 0.

Proof The proof is by induction on the order of H. Suppose that H; is an unreduced

matrix of order of order two. The last row results of the equation Hys = s6 is
THys=p 0y = 0
ey Hys = Bhoy + apoy = by,

where e;frs = o;. If 03 = 0 then B0, = 0. Since H, 1s unreduced, then oy = 0 which
is a contradiction since by definition eigenvectors are non zero.
Assume the lemma’s truth for matrices of order n — 1. Let H,, € R"*™ be an

unreduced Hessenberg matrix and partition the equation H, s = s6 as

Hn-—l hn Sp~1 Sp—1

Il
S

T
/B n€n_1 Oy ay Ty

where H,_; € R X" 1 and s,,_; € R*7 1. Note that H,_; is unreduced since H,, is.
T T

T n—1

Suppose e’ s = 0, = 0 which implies that 8,¢;_.s,_1 =0 and H,_15,-1 = $,-10. By

the induction hypothesis eI 15n—1 # 0 and hence 3, = 0 which is a contradiction.

n—

The proof for the result that efu # 0 where HTu = u# also follows from a similar
proof by mathematical induction. ]

Unreduced Hessenberg matrices have rank at least n — 1 since the first n — 1
columns are linearly independent. Thus the null space of H — 1 is of dimension one
if p is an eigenvalue of H and zero otherwise. If the invariant subspace associated
with an eigenvalue is of dimension greater than one, then the corresponding matrix is
derogatory otherwise the matrix is nonderogatory. It follows then that a symmetric
unreduced tridiagonal matrix cannot have a repeated eigenvalue since a repeated
eigenvalue would imply that the eigenvectors of the symmetric matrix would not

span R™. The previous discussion is summarized by the following result.

Lemma 2.2 An unreduced Hessenberg matrix is nonderogatory. In par-

ticular, if H is a symmetric matrix all its eigenvalues are distinct.
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It follows that an unreduced nonsymmetric Hessenberg matrix is likely to have an
ill conditioned basis of eigenvectors when it has nearly equal eigenvalues. When there
is a repeated eigenvalue the lemma implies that H € R™*" has less than n linearly
independent eigenvectors. If the eigenvectors of a matrix of order n are not a basis
for R™ then the matrix is called defective. Hence, if H has a repeated eigenvalue it
is a defective matrix.

Unreduced Hessenberg matrices reveal much information about the underlying
eigen-system. Ericsson [29] and Parlett [59, 61] provide an abundance of results for

Hessenberg matrices.

2.2 The Arnoldi Factorization

After k steps, the Arnoldi method computes
(2.2.1) AVi = ViHi + fref,

where VkTVk = I} and H; € R** is an upper Hessenberg matrix. The vector fy is
the residual and is orthogonal to the columns of V;, the Arnoldi vectors. The matrix
Hy = VI AV, is the orthogonal projection of A onto the Range of Vi. Equation (2.2.1)
defines a length k& Arnoldi factorization of A. If the residual f; is the zero vector then
equation (2.2.1) is called a truncated Arnoldi factorization when k < n. Note that f,
must vanish since VI f,, = 0 and the columns of V,, form an orthogonal basis for R™.
In this case the Arnoldi method computes an Hessenberg decomposition.

The following classical result explains that the Arnoldi factorization is completely

specified by v;.

Theorem 2.1 (Implicit Q) Let two length k& Arnoldi factorizations be
given by

AVi = ViHy+ frel,
AU, = UGy + riel,

where Uy and V; have orthonormal columns, and Gy and Hj are upper
Hessenberg matrices with positive sub-diagonal elements. If the first col-

umn of Vi and Uy are equal then Gy = Hy,, U, = Vi, and 1 = fi.
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Proof See Golub and Van Loan [35, page 367)]. O

The essential hypothesis is that Hj is unreduced. We note that if H) has any
negative sub-diagonal elements, a diagonal matrix Dy, consisting of 1 is easily com-
puted so that DJ'HyDj has positive sub-diagonal elements. Lquation (2.2.1) may

then be updated to obtain another Arnoldi factorization
AViDy = ViDy(D; HiDy) + bk fref,

where 8, = ekaek. The direction of v, is the important consideration.
The following algorithm shows how the factorization is extended from length k to

k+p.

Algorithm 2.2
function [Viip, Hitp, fe+p] = Arnoldi (A, Vi, Hy, fi, k, p)

Input: AVi — Vil = fuel with VIVi = I, VT fi = 0.
Output: AViyp — VigpHigyp = fk+p€z+p with ‘/ka‘-p‘/k'f"l’ = ity
and ij_;p fr+p = 0.
1. Fory=1,2...p
2. Bryi — [ fewi-1lls i Bre; = O then stop;
3. Okj ¢ frrio1Biris Vari o [Virio1, 0kail;
W Avkay;

T . T .
hig = Vi 105 Qg U W0

3
4
5
6

Hepi o [ Higja hk+j]

T .
Brtithrj1 Okt
7. feti = w = Vigjrhigj — kg ks
A few remarks are in order.

1. If A is symmetric, then Hj is a symmetric tridiagonal matrix so that h{H =

Brsjek, j—1 and hence a three term recurrence may be used to compute fi4;.

2. If k =0, then V; = v; represents the initial vector.
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3. In order to ensure that the k-th residual is numerically orthogonal to the matrix
of Arnoldi vectors V; in finite precision arithmetic, procedure Arnoldi requires
some form of re-orthogonalization at Line 7. This is the subject of Chapter 7.
Mathematically, the residual fx,; computed at Line 7 represents the projection

of w = Awg,; onto the orthogonal compliment of K4, (A, v1).

4. In exact arithmetic, the algorithm halts only if a residual vector vanishes, i.e.
fi = 0. The implications of a truncated Arnoldi factorization are discussed in

§ 2.4.

5 If f; = 0 for j < n, then the factorization may be modified to extend the
truncated factorization by using any unit vector orthogonal to the columns of
V;. The unit vector becomes the j + 1-st Arnoldi vector and the j-th sub-
diagonal element, f;,1, is zero. Although VT AV, = H, is upper Hessenberg, it

is not unreduced.

2.3 Orthogonal Reductions to Hessenberg Form

If Algorithm 2.2 is used to compute a length n Arnoldi factorization, then the resulting
factorization is also an Hessenberg decomposition of A. Theorem 2.1 indicates when
the decomposition is unique. Other orthogonal methods for computing Hessenberg
decompositions are based upon Givens rotations or Householder reflectors [35, 86].
The Householder reduction computes a sequence of Householder reflectors W; de-
signed to introduce zeros in last n — j — 2 elements of column j of Wfll .- WTA. The
product U, = Wi - W, _, results in an orthogonal matrix so that (ngUn is upper
Hessenberg. The first column of U/, is €; so that by Theorem 2.1, the Hessenberg de-
composition computed by Algorithm 2.2 with v; = € is equivalent to that computed
by the Householder reduction. Given an arbitrary unit vector »y, a Householder re-
duction to upper Hessenberg form is an orthogonal matrix away from being equivalent

to an Arnoldi factorization as the following result shows.

Lemma2.3 Suppose an Hessenberg decomposition AV, = V,,.H,, is com-
puted by Algorithm 2.2 for A € R™*". If W, is an orthogonal matrix such
that Wyes = Ve, then the orthogonal decomposition (W'UT AWy)U, =
U, @G, is such that WU, =V, and GG, = H,,.
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Proof
Let W, be an orthogonal matrix so that Wye; = Vieq. Let WUTAWOU" = U,G,
be a Hessenberg decomposition. Since Wyll,ex = Woey = V,.e1, Theorem 2.1 gives
the necessary equalities. m|
This simple observation allows us to establish a direct link between all orthogonal
reductions, or factorizations, to upper Hessenberg form. As will be seen in Chapter 5,
the various methods for computing the decomposition may produce drastically dif-

ferent results when computing in finite precision arithmetic.

2.4 Truncated Arnoldi Factorizations

The following section is concerned with finding conditions for the Arnoldi method
terminating prematurely. This is a welcome event since if AV, =V, H,, is a truncated
Arnoldi factorization of length m, the eigenvalues of H,, are a subset of those of A.
Indeed, if H,,Z,, = Z,,T,, is a real Schur decomposition, then AWV, Z,) = (Vo Zon) T
is a partial one for A. A few results are needed before a theorem stating necessary
and sufficient conditions for a truncated factorization is presented.

The first result needed is a slight modification of Theorem 7.4.3 proved in Golub

and Van Loan [35]. It allows us to establish a connection between the Krylov matriz
K.(Av) = [ v Avy - AMTlyg
and an Arnoldi factorization.

Theorem 2.3 Suppose () € R™*" is orthogonal and A € R"*" such
that AQ = QH is an upper Hessenberg decomposition. Partition Q) =
[@my @n—r] Where @, € R*"*™ and set H,, = QT AQ,,..

m

Then H,, is an unreduced Hessenberg matrix if and only it

T I(m(A, Ul) = R, € Rmx"z,

e
is nonsingular and upper triangular, for m =1,...,n.

Proof Let AQ = QH be an Arnoldi factorization of length n. Partition ) =
[Qm,Qn_m] where Q,, € R"™™ and set H,, = QT AQ,.. Note that QTA'v, =

T

QTAQ - QTAQe, = Hiey for j =0,...,n — 1, and then
Q'K (Av) = [QTu QTAw ... QTA" 1w |,
(2.4.1) = [en Heo ... H'™ ey ],
= R,
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is an upper triangular of matrix order n. Thus Q?:LK,,L(A,vl) = R, is the leading
principal sub-matrix of R of order m.

Suppose that H,, is an unreduced Hessenberg matrix. The diagonal elements of
R, are e,TRmei = B3y Bifori=1,...,m with 8; = L. The non-singularity of R,
now follows.

For the converse, suppose that R, € R™*™ is nonsingular and upper triangular.
Since H’e; € Span{e,..., €41} is a linear combination of the first j columns of H
it follows from equation (2.4.1) that R,.e;41 = H, R,,¢; for j =1,...,m — 1. Since
R, is nonsingular and upper triangular, all its diagonal elements are nonzero. To
show that H,, is an unreduced upper Hessenberg matrix, consider eﬁ_leejH for
j=1,...,m—1. Since R, e;41 = H, R,¢; it follows that

m

eJTHHmRme‘,- = Z(e]rﬂHmei)(e?R,,Lej) = (e]]-‘ﬂH,,Lej)(ejTR,,Le]-)

i=1

because el Ry,e; = 0 for ¢ > j and e:fHH,,,Lt:,; = 0 for = < j. Thus e};leej =

eJ-THR,,Lej_,_l / e]TR,,Le]- # 0 for j = 1,...,m — 1 since by assumption the diagonal
elements of K, are nonzero. 0O

Theorem 2.3 implies that the residual f,,4+1 vanishes at the {irst step m such that
the dimension of K,,4+1(4, ;) is equal to m and hence is gnaranteed to vanish for
some m < n.

The monic polynomial ¢()) of smallest degree such that ¢(A)vy = 0 is called the
minimal polynomial of A with respect to v;. The degree of the minimal polynomial
of A with respect to vy is called the grade of v1. Suppose that the grade of v, is
m. Define C,, = [e2,---,€n,cn] € R™™ where ¢, is the solution of the linear
system K,,(A,v1)c,, = —A™v;. We note that such a solution exist since 1,,(A) =
A A1l e+ ... 4 efe,, is the minimal polynomial of A with respect to vy. It

™m

follows that
(2.4.2) AK,,(A,0n1) = K, (A 0)Ch,.

The matrix C,, is called a. companion matriz. If we assume that the diagonal elements
of R,, are non-zero, Theorem 2.3 implies that H,, is unreduced. From equation (2.4.2)
the identity AQ,, = Q. (R..C..R;}!) follows. By the Implicit Q theorem, Q,, =
Vi, and H,, = R,,C,. R}

(3

since the first columns of (),, and V,, are equal. From
equation (2.4.2) it follows that the characteristic polynomial for C,, is equal to the

minimal polynomial of A with respect to v;.



15

Ruhe [69] shows that AK;(A,v,) = K;(A,v1)C; where Cj = [eq, ..., ¢j,¢] € R/*J

for j < m. The vector ¢; € R7 solves the least squares problem
(2.4.3) mfitl} |A%v, — Ki(A o]l = ||ATvr — K;(A, v1)e].
ceER

Denote the residual of the least squares problem by r; and note that r; = ;(A)v;

where
i) =X —[1,..., X T¢; = det(C; — AL).
It follows that
AK;j(A,v) = Kj(A,0)C;+riel.

If AV; = V;H; + f;el is an Amnoldi factorization of length j with Vje; = vy then

Theorem 2.3 implies that f7(-f = rje]. Hence
(2.4.4) fi = (e Riej) ™'y = (] Bje;) ™ i(A)vr.

Saad [75] uses projection arguments to show that ;(\) minimizes l|4h;(A)vy|| over
all monic polynomials «/37 of degree 5. This property is also a direct consequence of
equation (2.4.3).

The following theorem summarizes the preceding discussion on the various rela-
tionships between an Arnoldi factorization and Krylov matrices. We remark that the

previous discussion is in the spirit of that presented by Sorensen [83, pages 360-362].

Theorem 2.4 Suppose the integer m is the grade of the unit vector v;
with respect to A. Let a sequence of Arnoldi factorizations be given by
AV, = V}-Hj—l—j'je;‘»r for j < m where Vje; = v1. If K;(A,v;) = Q;R; where
R; is upper triangular then ;()) = det(C; — AI;) solves

min |[¢;(A)vy|

over all monic polynomial of degree j. Moreover, C; = [ea,...,€;,¢;] €

R/*J is the companion matrix for H; where AK;(A,v1) = K;(A,v)C; +

T

rie; with

B Bifi = i(A)vy =15,

A

and if the sub-diagonal elements of R; are positive, then H; R; = R;C;,

‘/j = Qja and Cijej = /32 T ﬁ?



16

We now state the main result of the section indicating when an exact truncated
factorization occurs. This is desirable since the columns of V; form a basis for an

invariant subspace and the eigenvalues of Hj are a subset of those of A.

Theorem 2.5 Let equation (2.2.1) define a k-step Arnoldi factorization
of A, with Hj unreduced. Then f; = 0 if and only if v; = Qry where
AQr = QiRy with Q¥ Q. = I, and Ry, an upper quasi-triangular matrix

of order k.

Proof 1If f; = 0 then AV, = Vi Hy. Let HiyZy = Zy Ry, be a real Schur decomposition

where ZF Z), = I; and Ry, € R** is an upper quasi-triangular matrix. Then
Uy = ‘/;(761 = ‘/];Zkzgel = C)k:’/,

where y = Zl'e; and Vi Z; = Qi. Note that AQy = QxR

Conversely, suppose that AQy = QiRy with QfQr = I and Ry is an upper
quasi-triangular matrix of order k. Let v; = Quy with y € R¥ arbitrary. Now, for
any integer m > 0, A™Qr = Qi R} and thus

Am'Ul — Aka:'/ — Qkﬁ’,;’:‘:(/ € R(Qk)

Hence the dimension of the Krylov subspace K,,(A4,v1) is at most k. Since Hj is
unreduced, Theorem 2.3 implies that the dimension of Kji11(A,v1) is k and hence
Jr=0. 0

The theorem’s hypothesis indicates that the range of () represents an invariant
subspace for A. The diagonal blocks of Ry contain the eigenvalues of A. The complex
conjugate pairs are in blocks of order two and the real eigenvalues are on the diagonal
of Ry, respectively. The matrix equation AQ, = Qx Ry is a partial real Schur decom-
position of order k for A. In particular, if the initial vector is a linear combination
of k linearly independent eigenvectors then the k-th residual vector vanishes. It is
therefore desirable to to devise a method that forces the starting vector v; to be a
linear combination of Schur vectors corresponding to wanted eigenvalues.

Theorem 2.5 gives conditions for the Arnoldi factorization to prematurely ter-
minate. Computing in finite precision arithmetic blurs the exact conditions of the
theorem. The Implicit Q theorem and the results of § 2.3 show that all orthogonal re-
ductions to upper Hessenberg form are related. Thus the optimality property of Saad,
and Ruhe’s characterization of the Arnoldi factorization are fundamental results con-

cerning the reduction of a matrix to upper Hessenberg form. Ruhe’s analysis forms
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the basis of a perturbation theory for the Hessenberg reduction that is presented in
Chapter 5. In particular, the theory developed determines the sensitivity, or degree

of forward instability, of an Arnoldi or QR iteration upon the starting vector.

2.5 Stopping Criteria

This section considers the important question of determining when a length k£ Arnoldi
factorization has computed approximate eigenvalues. If the norm of fi is small, the
k eigenvalues of Hj are approximations to k eigenvalues of A. Numerical experience
indicates that ||fi]| rarely becomes small let alone zero. Nevertheless, some of the
eigenvalues of Hy may be good estimates of the eigenvalues of A. Since the interest
is in a small subset of the eigensystem of A, alternate criteria that allow termination
for k < n are needed. Let Hys = s0 where |[s|| = 1. Define the vector x, = Vis to

be a Ritz vector and the scalar € to be Ritz value. Then
(2.5.1) |AVis — ViHys|| = ||Azx, — @, 0| = || fxll Iezjsl,

indicates that if the last component of an eigenvector for Hy is small the Ritz pair
(,,0) is an approximation to an eigenpair of A. We note that by Lemma 2.1, lefs| >0
if Hy is unreduced. This pair is exact for a nearby problem: it is easily shown that
(A+ E)x, = 2,0 with E = —(efs)fra”. The advantage of using the Ritz estimate
Il £x|l |eFs| is to avoid explicit formation of the direct residual AVis — Visf when
accessing the numerical accuracy of an approximate eigenpair. We remark that a
small || E|| does not imply that the Ritz pair (,,#) is an accurate approximation to
an eigenpair (z,)) of A. The perturbation theory presented in § 5.2 of Chapter 5
considers these accuracy 1ssues.

Recent work by Chatelin and Fraysée [18, 19] and Godet-Thobie [34] suggests
that when A is highly non-normal, the size of el's is not an appropriate guide for
detecting convergence. If the relative departure from normality defined by the Henrici
number ||AAT — ATA||r/||A%||F, is large, the matrix A is considered highly non-
normal. Assuming that A is diagonalizable, a large Henrici number implies that the
basis of eigenvectors is ill-conditioned [18]. Bennani and Braconnier compare the
use of the Ritz estimate and direct residual ||Ax, — 8| in Arnoldi algorithms [12].
They suggest normalizing the Ritz estimate by the norm of A resulting in a stopping
criteria based on the backward error. The backward error is defined as the smallest, in

norm, perturbation AA such that the Ritz pair is an eigenpair for A+ AA. Scott [80]
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presents a lucid account of the many issues involved in determining stopping criteria

for the unsymmetric problem.

2.6 Convergence Properties of Krylov Spaces

In this section, we consider the rate at which the eigenvalues of H,, emerge as ap-

proximations to those of A as m increases towards n. Since H,, is the projection of

A with respect to the columus of V,,,, Saad [74] proposes studying the convergence of
3

the two residuals (A — 61, or (V,,H, VT — AL,)x, for some eigenpair (z,)) of A,

m

to zero. Indeed, the former residual is that used in equation (2.5.1) of the previous

section. Saad [78] uses the latter residual to obtain the inequality

I = ViV )e]

T

IVl

(261) ||(Hm_)‘lm)(vT )” < Yrn

T —_

bJ
where

Y Z Vo Vi AT = Vi VOl < NIAL

™ "

The quality of the approximation afforded by V,, and H,, is governed by the tangent
of the angle between K,,,(A, V,,¢1) and @, which is given by the ratio on the right hand
side of equation (2.6.1). Thus, the size of the numerator ||(I — V,,V.T)z||, the sine

of the angle between K,,(A, V,.¢1) and x, is the quantity to estimate. The following

theorem which we state without proof is due to Saad [75).

Theorem 2.6 Assume that A is diagonalizable with eigenpairs (z;, \;)
where each eigenvector is of unit length. If V,,e; = «;(y + -+ - + x,(, with

¢1 # 0, then there exist m eigenvalues Ay, ..., A, 41 of A such that

(262) ”(] V;IL‘/HT; 1” Z :gjl i”
where

1 1%-:1 7ﬁ1

e =2 1=2,1#;

If A — N > X =N for 5,0 = 2,...,m + 1 then ¢* < 1. The geometrical

interpretation is that A’s extremal elgje,nvalueb that are well separated emerge as



19

eigenvalues of H,,. This generalizes the well known convergence behavior of the
Lanczos iteration [61, 73].

The constant multiplying £}* consisting of the normalized sum of expansion coef-
ficients on the righthand side of equation (2.6.2) reflects the possible ill-conditioning
of the matrix of eigenvectors for A. This may be seen as follows. Suppose the left
eigenvector [35, 101] corresponding to the right eigenvector x; is denoted by y]H , for
j = 1,...,n where ); is distinct from the other eigenvalues. Assume the left eigen-
vector is also of unit length. Using the Cauchy—-Schwartz inequality, it follows that
IGillyE x| = lyFo] < lwilllloall = 1, giving |(;] < secy; where ¢; measures the angle
between the corresponding left and right eigenvector. If the eigenvalue A; is poorly
conditioned, then sec ; is large and possibly so is the coefficient |(;|. If we assume

that the eigenvalues of A are distinct, then

Z|C7 Zl“

|CI j=2

ec ;|

Gl

may be quite large. The conclusion is that a large factorization may need to be
built for poorly conditioned eigenvalue problems in order for good estimates of A’s
eigenvalues to emerge in H,,. In addition, if A is defective, it may not possess a basis
of eigenvectors. Numerically, problems are encountered when a basis for the desired
invariant subspace is poorly conditioned. The recent thesis of Jia [43] extends Saad’s
results without the assumption that A is diagonalizable.

Finally, we end with a theorem that combines 7, and f3,,4+1 to estimate how close
Km(A, V,e1) is to an invariant subspace of A. But first we provide a brief motivation
for the theorem.

Suppose that Z = [ 7 sy } is an orthonormal matrix where the columns of
An An
An Ap
where A;; = ZFAZ; for i,j = 1,2. Since R(Z;) is invariant under A, there exist a
matrix G; € R"™*™ so that AZ, = Z,(G;. Thus, Ay; = ZfAZl = Z2TZ1G1 = () since

Z is orthonormal.

Z1 € R™™ gpans an invariant subspace for A. Partition ZTAZ =

Stewart [85] considers the interesting question of how close Z; is to an invariant
‘0. For example, if Z and ZTAZ are

partitioned conformably with Z and Z7 AZ, respectively, can an orthonormal matrix
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Y deviating little from I,, be found so that Z = ZY ? Stewart chooses

Im _PT
P 'I’IL—'IIL

(L, + PTP)~1/2 0

Y =
0 (]u—m + PPT)_I/Z

)

where P € R("=)%™ and since both I,, + PTP and I,,_,, + PPT are positive definite
and symmetric matrices, the square roots are uniquely defined. The answer to whether
the column space of Z; is an accurate approximation to that of Z, becomes that of
analyzing the interaction among the matrices P and A;; for ¢,j = 1,2. The analysis
presented by Stewart gives the following interesting interpretation with respect to an

Arnoldi factorization.

Theorem 2.7 Suppose that AV,, =V, H,, + f.el is alength m Arnoldi

“m

factorization that is extended to a Hessenberg decomposition of A:

] i H, M,
A [ Vin Vacw ] - [ Vi Vi ] |: ﬂm_}_lfgle?; Hn_m } ’

where (41 = || finl|- Let

— [] —_ o ”XHm - Hn—-mX”F
b = sep(Hu, Hini) = 1pin X r '

If 483,417, < 62, then there is a matrix P that satisfies the bound

m?

3
Pl < 2l
(S'HL
so that the columns of @, = (V;, + V,,_,, P)(I + PTP)~Y/? are an orthog-

onal basis for an invariant subspace of A.

Proof A simple derivation shows that v, = ||V,,VTA(I — V,,VI)| = ||Mw.||- The
conclusion now follows directly from Theorem 4.1 of Stewart [85]. O

The size of ,, measures the amount of coupling between the R(V,,) and R(V,,_,.).
The reciprocal of §,, measures the sensitivity of the R((Q,.) as an invariant subspace.

It may be shown that

Sep(Hm; H’IL—’HI,) S Hl:iln |/\k(Hm) - )‘l( An—m)l'
Moreover, Varah [94] shows that if the matrices involved are highly non-normal, the
smallest difference between the spectrums of H,, and H,_,, may be an over estimate

of the actual separation.
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Theorem 2.7 shows the dependence of f,,4; upon =, and é,, in determining
the quality of the R(V,,) as an eigenspace of A. Since VIQ,, = (I+ PTP)-1/2
Stewart [85] shows that the singular values of P are the tangents of the canonical, or
principal, angles [18, 35, 85] between the two spaces spanned by the columns of V,,
and @),,, respectively.

Unfortunately, both Theorems 2.6 and 2.7 require information about A that is not
readily available. In addition, Theorem 2.7 requires that the sub-diagonal element
Bms1 of H be small relative to §,, and ~,,. The next two chapters give conditions

under which we can expect this situation to occur.
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Chapter 3

The QR Algorithm

The QR algorithm is a general purpose method for computing all the eigenvalues of
dense matrices. The LR-iteration of Rutishauser [72], based on a triangular sequence
of similarity transformation, preceded its discovery. The QR algorithm, developed
independently by both Francis [32] and Kublanovskaya [45], instead uses a sequence
of orthogonal similarity transformation The algorithm iteratively computes an ap-
proximation to the real Schur decomposition.

The chapter first examines the explicitly shifted iteration and some of its funda-
mental properties in § 3.1. The convergence of the iteration is considered in § 3.2.
The well known duality of the QR iteration and inverse iteration is interpreted in
terms of Krylov subspaces in § 3.3. The practical Qi algorithmn is the subject of
§ 3.4 which includes a discussion of the implicitly shifted version. There is wealth of
excellent material on the QR algorithm. Thorough introductions are given by Golub
and Van Loan [35], Parlett [61], Stewart [86] and Watkins [97, 98]. More advanced
treatments include those by Parlett and Poole [65], Watkins and Elsner [100], and
Wilkinson [101].

For the remainder of the chapter we assume that A is factored into AU = UH
where H is an unreduced upper Hessenberg matrix and UTU = I,,. There is no loss

of generality since if H is reduced then for some 1 < 5 < n,

_ | Hi M
1o H |’

where H; is an unreduced Hessenberg matrix. The eigenvalues of H are the eigenval-
ues of H; and H,_; so that we may work with H; and then in turn H,,_;. We remark
that if Schur vectors or eigenvectors are desired for any of the eigenvalues of H,_;,

the sub-matrix M; is required.

3.1 Explicitly Shifted QR Iteration

The explicitly shifted QRr-iteration is defined by
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Algorithm 3.1

Input: H®) = H an unreduced upper Hessenberg matrix, and a sequence
of shifts {r;}7_;.
Output: H®+Y and Z0) «— QM ... QW)

1.1 Fory=1,...,p
2.1 Compute the QR factorization :
QUR = HW — 7.1 ;
2.2 HUtD  ROQU 4 7,1

One cycle of the iteration is said to be a QR step. Some of the most important

properties in a QR step are summarized with the following lemina.

Lemma 3.1 Let H — 7] = QR be a QR factorization where H is an
unreduced upper Hessenberg matrix and denote ¢! Re; = p;. Then the

following properties hold:

1. @ is an upper Hessenberg matrix.
2.pp#0fori=1,...,n—1
3. p, =01if and only if 7 is an eigenvalue of H.

4. eT(RQ + 71) = el if and only if 7 is an eigenvalue of H.

Proof A sequence of plane rotations ;1 are easily constructed so that

( W(H —71I)

Ty — ln

is upper triangular [35, page 215]. Each G, is designed to annihilate the entry in
the (¢ +1,) entry of GfL,;--- G¥,(H — I)). The product Gy, ---Gyp_q, is upper
Hessenberg and GE, -+ GH,(H — 11) is upper triangular. Set Q = G- Goyn
and R = Q(H — 7I). Note that () is an upper Hessenberg matrix.

A simple derivation shows that e;‘q_lHei = 6'3;_1(264/),;. Since H is an unreduced
upper Hessenberg matrix, 0 < |el He;| = lel Qeillpi] < |pil for i = 1,...,n —1
establishing the second property.

The matrix H — 71 is singular if and only if 7 is an eigenvalue of H. The third
property follows immediately since det(H — 71) = det(R) = py - p,, is zero if and

only if p, is.
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The third property gives p, = 0 if 7 is an eigenvalue of H. Since eI R = ¢Ip, the
final property holds. O

The lemma allows us to conclude that all H) remain upper Hessenberg. The only
sub-diagonal of H') that ever becomes zero is the last one and this is purely a function
of the shift. If a shift is equal to an eigenvalue, then we no longer have an unreduced
Hessenberg matrix and instead we only continue working with the leading sub-matrix
of HY that remains unreduced. It should be emphasized that the conclusions of
Lemma 3.1 hold in exact arithmetic. An elegant extension of Lemma 3.1 to the case
where p shifts are applied is proved by Miminis and Paige [53]. However, we show in
Chapter 5 that computing in finite precision may have dramatic effects that degrade
the expected performance of multiple shifts.

The following properties are consequences of the iteration. The first two are easily
established using mathematical induction; see for example [86, 97]. The third is a
standard result that does not depend upon the condition that H is an Hessenberg

matrix.
Lemma 3.2 Let Z®) = QW ...Q® Then HZ® = Z®) gr+1),

Proof The result follows by a simple induction argument since it easily follows that

H® = ROQW 4 17 = (QNHTHMOQW — [ 4+ 7T = (QUYHHQW. 0O

Theorem 3.2 Let Z®) = QW...Q®) and T®W = R ... RM)  Then
Zz®OT® = P(H) where P(A\) = (A—7)--- (A —7,).

Proof For p =1 the result is Line 2.1 of Algorithm 3.1. Suppose the result is true

for p — 1. From Line 2.2 of Algorithin 3.1 and Lemma 3.2 we have
RW = (H+Y _ QU = (ZzhH(H — 7,1\ ZM(QUNH
and note that ZW(Q®)H = Z-1  Thus
T®) = RE)TE-1) — (ZWHH(H — 7,1)Z-17e-1),

which results in ZWT ) = (H—7,1)Z@-VT®=1) = P(H) by the induction hypothesis.
a

Theorem 3.3 Suppose that H € R and let P(A) = (A —7)--- (A =
7,) be a polynomial. If Hs; = s;\; where s; # 0 then
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Each HY) computed by the iteration is orthogonally similar to the original H
according to Lemma 3.2. Theorem 3.2 tells us that the explicitly shifted QR-iteration
computes the QR factorization of P(H). The proof is due to Stewart {86, page 353].
Since T®) is an upper triangular matrix, the first k columns of Z(¥) are an orthogonal
basis for the space spanned by the first k columns of P(H).

Since any of the shifts might have a nonzero imaginary part, the matrix Z ) ig
in general unitary. In practical computation, the Z®) constructed is orthonormal as
long as two of the shifts applied form a complex conjugate pair. The details of the
application of a complex conjugate pair of shifts in real arithmetic are delayed until
§ 3.4. Unless otherwise stated, we assume that if a shift has a nonzero imaginary part
then its complex conjugate pair is also applied.

If any shift 7; is equal to an eigenvalue A\; of H, then Theorem 3.3 gives that
P(X\;) = 0. Thus, the non-zero eigenvalues of H used as shifts are zero eigenvalues
of P(H). The previous three results will prove useful for the remainder of the thesis.

For the present they allows us to establish the following theorem.

Theorem 3.4 Suppose that AU = UH is an upper Hessenberg decom-
position of A where H has positive sub-diagonal elements. Suppose that
Algorithm 3.1 is used with the p shifts 7y,..., 7, on H resulting in H®P),
Let Z0) = Q... QW and PN = (A =7)---(A—1,).

If AV, = VilHy + fre} is an Arnoldi factorization with the first column of
Vi equal to pP(A)Ue; where o=t = ||P(A)Ue1}], then Hy is the same as the
leading principal sub-matrix of order k of H® and V, = UZ®W(eq, ..., €]

for k=1,...,n.

Proof Let AU = UH be a upper Hessenberg decomposition of A where H has

positive sub-diagonals elements. Using Lemma 3.2 it follows that
(3.1.2) AUZW = UHZ® = 770 g1}

p+1 2
H;EH ) M,g’ +1)

) . . Equate the
B el HIYY

Partition UZ® = [ Wy, W, | and H+D =

first £ columns of equation (3.1.2) to obtain

AW, = Wl + B0 (W )ef .

Theorem 3.2 gives ZWT® = P(H) where T?) = R ... RO But P(H) =
PWUTAU) = UTP(A)U which implies that UZWT®) = P(AYU. 1f p = I TWe,
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then UZPT®e, = UZWeyp; which gives UZWe; = p7P(A)Uer. Theorem 2.1
of Chapter 2 (Implicit Q) then gives that Hy = H,ﬁ”*”, Vi = Wy, and fr =
,B,E.pﬂ)(ﬁ/”_kel) with p = p7t. a

We remark that if in the theorem’s hypothesis the m-th sub-diagonal of H 1s zero,
then the conclusion only holds for k = 1,...,m. A fundamental identification between
an Arnoldi factorization and an explicitly shifted QR iteration is established. The first
m columns of Z®) are an orthogonal basis for the Krylov subspace K..(A, oP(A)Ue).
In words, every step of a QR-iteration defines a Krylov subspace and hence an Arnoldi
factorization. The immediate benefit is to establish the convergence typical of an

Arnoldi iteration.

3.2 Convergence of an Explicitly Shifted QR Iteration

The main result of this section gives conditions that determine the convergence of
the explicitly shifted QR iteration on Hessenberg matrices. Parlett [60] presents the
first set of comprehensive sufficient conditions for convergence of the QR-iteration
on Hessenberg matrices while a portion of the paper by Parlett and Poole [65] con-
siders a geometric convergence theory for Hessenberg matrices. A comprehensive
geometric convergence theory for the shifted QR iteration is presented by Watkins
and Elsner [100] within the more general framework of generic GR algorithms. A GR
algorithm is an iterative procedure such as in Algorithm 3.1 where the QR factoriza-
tion is replaced with any other decomposition of the form GR = H — 7 where R 1s

upper triangular and G is a nonsingular matrix.

Theorem 3.5 Let H € R"*" be an unreduced upper Hessenberg ma-
trix and ¥()) be a polynomial. Order the eigenvalues Ay, Az, ..., A, of H
so that |T(A\)]| > |¥(A2)] = -+ = |¥(M)|. Let HQ = QR a real Schur
decomposition where the first & columns of () span an eigenspace corre-
sponding to the eigenvalues Aq, ..., Ax. Suppose k is a positive integer less

than n such that py = [¥(Aep1)l/|P (k)] < 1.

"
1=

If a sequence of shifts {7;}/*, has the properties that

rpm(/\i)E(Ai_Tl)"'()‘i_Tm) - \II()\z), L=k+l,,n
fpm()‘i) 7£ 0, ¢ = 1,...,](7

m

H T, € R)
1=1
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as m — oo, then Algorithm 3.1 computes an upper Hessenberg matrix

(re+1) (m+1)
Hk Mk

m+l) 7 (m+1) )
/3k+1 €16} H’u—k

H(m+1) =

and an orthogonal matrix Z(™) such that for every value of jy satisfying

pr < pr < 1 there exist a constant C' such that
I < O and dist(Qu Z8) < O™,
where Z™ = ZM[ey, ... e,

Proof See Theorems 5.4 and 6.2 of Watkins and Elsner [100]. O

The distance between the subspaces [18, 35] R(Qx) and ’R,(Z,E.p)) may be shown to
be equal to \/ 1-|1QTZ ,E"L)H?'. For increasing values of m, the approximating subspace
’R(Z,Ep)) aligns itself with R(Qx). Thus the dist(Qx, ka)) — 0 and the eigenvalues of
H ,gm"'l) tend to Aq,..., A\x. It follows from the theorem that for all values of k& such
that pr < 1, the k-th sub-diagonal element of H (m+1) tends to zero.

The hypothesis on the product of the shifts ensures that if one is applied with a

nonzero imaginary part, then its complex conjugate is also a shift. The hypothesis
on pi implies that complex conjugate pairs of eigenvalues are kept together; A; = A;
only if 2,5 < k.

The theorems proved by Watkins and Elsner in [100] identify the convergence of
the QR algorithm with that of simultaneous iteration, or subspace iteration. The
QR-iteration uses the starting subspace of Span{ej,e€s,...,er}. This is easily seen
by using Theorem 3.2 and equating the first &k columns of ZU")T(") = P(H). This
forms the basis of a geometric convergence theory for the QR-iteration and other GR

algorithmns.

3.2.1 Implications for a Shifting Strategy

The following example is due to Watkins and Elsner [100, page 30] and illustrates the
use of Theorem 3.5.

Suppose that {Ay,..., A} U {Aes1,-.., A} is a disjoint partition of the spectrum
an unreduced upper Hessenberg matrix H € R™*". We also assume that the complex
conjugate pairs of eigenvalues are kept together; A\; = X; implies that 4,5 < k or

t,J > k. Define the polynomials

A=A —=Xeg1) - (A=X,) and P,(A)=A—=711) (A=)
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The shifts 7; are chosen so that W(\;) — P, (X)) = 0asm — oo, fore=k+1,...,n
but P, (A;) # 0 for j = 1,...,k and that there exist a positive integer mq such that

for all integers m > my,

(3.2.1) min |P.(X;)] >  max |Pu(Aj)]

i=1,...k i=k+1,...n

It is also assumed that if any of the shifts has a nonzero imaginary part, its complex

conjugate is also a shift. If p, = [U(Ae41)l/|P(Ak)] < 1, then Theorem 3.5 gives

)

that Algorithm 3.1 computes a sequence of Hessenberg matrices H (") and orthogonal

(m)

matrices Z such that

ﬂk’_:;l'l — 0 and diSt(Qk,Zlg"‘))-——)O

where Z{™ = Z(™[ey, ... e;]. It follows that HZ™ = zI™H™ is converging to
the partial real Schur decomposition of interest.

The search is for the best approximating polynomial P,,(A) or equivalently, a
proper set of shifts. If, for example, 7, = Ay fori = 1,...,n—k then P,_x(A) = ¥(A)
and py = 0. Thus, after application of the n — k shifts, the leading principal sub-
matrix of order k of the upper Hessenberg matrix H"=*+1) computed by Algorithm 3.1

contains the eigenvalues Aq,..., As.

3.2.2 Implications for an Arnoldi Factorization

As mentioned in § 1.2.1 of Chapter 1, computing a partial real Schur decomposition
corresponding to a small subset of the eigenvalues of A is the major goal of this
thesis. Since the size of A is often so large as to prevent using the QR algorithm, let
us consider the possibility of computing the just the leading portion of the iteration.
Let AU = UH be a Hessenberg decomposition. Using the notation of Theorem 3.5,

we may write a length k& Arnoldi factorization as

(3.2.2) Aavzi™ = vz HS 4 a2 e 0)eE.

Suppose that AQy = Qi Ry, is a partial real Schur decomposition of order k. Expand
(3.2.3) Uz"™e; = Quax+r,

where QTr = 0. Note that r = (I — Q:QT)UZ™e;: The norm of r measures the
sine of the angle between the R(Qx) and the first column of UZM™. 1t H™ is
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unreduced, then Theorem 2.5 shows that r approaches zero if and only if ﬂ,(cz:f Y does.

Theorem 3.5 gives the convergence rate of ﬂ,&"f Y to zero given a shifting strategy.
However, the shifting strategy has the effect of replacing the starting vector—which
re-starts the factorization of equation (3.2.2). The IRA-iteration, introduced in the

next chapter, is motivated by precisely this idea.

3.3 Duality of the QR iteration and Krylov Spaces

The following theorem establishes a fundamental relationship between the QR algo-

rithm and inverse iteration.

Theorem 3.6 Suppose that H — 7] € R"*" is a nonsingular Hessenberg
matrix. It H — 7] = QR where () € R"*" is orthogonal and R € R"*" is

upper triangular, then
(3.3.1) (H~r"T = QIL,
where L = R77T.

Proof The result follows easily by first inverting the equation H — 7] = QR and

then taking the transpose of both sides. a
The proof of the theorem shows that the hypothesis that H is an upper Hessenberg

matrix may be removed. The only crucial hypothesis is that of nonsingularity.

Post-multiplying both sides of equation (3.3.1) with ¢, results in
(H — T‘I)“T(-’l"p" = Qe,

where p,, = 6:,7:1?,6". Apparently, one step of the QR-iteration amounts to inverse itera-
tion with (H — TI)_T on the vector ¢,. The implication is that while the QR-iteration
builds an orthogonal factorization for the Krylov subspace K, (A — 71,UQe;) it is
also building one for K, ((A — 71)~7,UQe,), where AU = UH is an Hessenberg de-
composition. We call the latter space the dual Krylov subspace of K,,(A —71,UQe,).
This duality and the convergence theory developed for Krylov subspaces in § 2.6 of
Chapter 2, helps to explain why the Hessenberg decomposition helps to sort the spec-
tral information of A. Indeed, practical shifting strategies for the QR algorithm use

information in K;((A — 71)"1,UQe,,) for j = 1,2.
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3.4 The Practical QR algorithm

This section briefly reviews some of the practical issues affecting the convergence of

Algorithm 3.1. The issues considered include:
e Deflation.
e Selection of shifts.
e The implicitly shifted QR iteration.
e Computing eigenvectors and reordering the Schur decomposition.

Our discussion is patterned after those in Demmel [24], Golub and Van Loan [35],
and Stewart [86].
For the remainder of the section we continue to assume that AU = UH is an

Hessenberg decomposition of A and that H is an unreduced upper Hessenberg matrix.

3.4.1 Deflation

Suppose that after m steps of Algorithm 3.1 we have

m m41
Hip Y H Y
T H(m+1)

H(m+1) — |:

22

where HI(T'H) € R for | < j < n. If € is suitably small we may set it to zero—this

is called deflation. This is justified since

m+1 m+1
H B

AUz(m) — (]Z(m) ¢
0 H§2 +1)

+ c‘(UZ(m)el )eT,

J

and setting E = —e(UZ"e)(UZe;)T it follows that

H(m+1) H(:”H-l)
A+E)WZM = Uzt | T e :
( ) 0 H2(;n+1)
Since ||E|| = ¢, deflating the sub-diagonal element is equivalent to computing the
eigenvalues of a matrix near A. After deflation, two unreduced Hessenberg matrices
remain. Since computing the eigenvalues of a matrix determines the roots of its char-

acteristic polynomial, deflation is equivalent to factoring the characteristic polynomial

for a nearby matrix.
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(m+1)

A criterion used by both EISPACK [82] and LAPACK [1] is to check if |3;"" | <
(m+1) <

m+l
77(| § 1

||A]| the criterion deflates sub-diagonals that are small relative to the matrix. Every

1 . . . . . . -
|+ lag-m+ )|) for 2 < j < n where 75 is the machine precision. Since «;

sub-diagonal element of H(™*1) element that satisfies the above inequality is set to
zero. If B{"+1) is negligible, then ol™+1) is an approximate eigenvalue and we continue
the QR-iteration on the leading sub-matrix of H(™+1 of order n — 1. Francis [33]
also explains how deflation may be performed if the product of two consecutive sub-

diagonal elements is small.

3.4.2 Shift selection

Although Theorem 3.5 indicates the convergence expected of Algorithm 3.1 given a
set of shifts, the important question of selecting one has gone unanswered. From
Lemma 3.1 we expect the last sub-diagonal element to become small after a QR step
with a shift close to an eigenvalue of H. According to the results of § 3.3, the lower
right hand corner of H™) contains some important spectral information. Consider

the residual of using (e,,7) as an approximation to an eigenpair of (H™))T:
I(H™ —7D)Te,|l = [(H"™) e — renll = [[(an = m)en + Buen-ll 2 1ul.

The Rayleigh quotient 7 = eI H"¢, results in the minimum residual. Since the
eigenvalues of (H™)T are the same as those of H the previous discussion sug-
gests that Algorithm 3.1 use the sequence of R,a.ylelgh quotients eI H™e, as shifts.
Assuming the hypothesis of Theorem 3.5 on p,_; are met, then ﬂ,(b"‘) tends toward
zero. In fact, a straight forward calculation shows that before the last plane rotation

necessary for the QR factorization of H (n) — 7] we have

r -

O A €
0 « T i}
;Z—l,n—‘z (’12(H(/m)_7']) = 0 0 =« T (6 ,
00 0 &
000 ™ 0|

where the G;_; ; are plane rotations. After completing the QR step it follows that

™m — (/H " ) |’Y7L| |7”L| ™
!ﬂ( +1)| ~ (m) 24 (m)yo < A~ () (/[’(‘ ) :
( Yy 1) (/B ) ( @y — l)
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Once Iﬂ("‘)| < 1 then B(*Y) goes to zero at a quadratic rate. In particular it H™) is
symmetric, then v, = 8™ and the rate improves to a cubic one.

A shifting strategy due to Wilkinson [101, 35] has generally been adopted for the
practical implementations of the QR algorithmn [1, 82]. Suppose that »; and v, are the
eigenvalues of the two by two block in the South-East corner of H™ . If v, and 1,
are both real numbers, then Wilkinson’s shift is defined to be the value of v; closet to
o™, Otherwise, the eigenvalues of this two by two block form a complex conjugate
pair. The next section considers an efficient manner in which a complex conjugate

pair of shifts are applied.

3.4.3 The Implicitly Shifted QR iteration

Theorem 2.1 (Implicit Q) of Chapter 2 gives conditions under which the Hessenberg
decomposition of (H — v1I1)(H — v,I) is unique. If H is an unreduced Hessenberg
matrix, then the decomposition (H — 1 I)(H — 1,1) is specified by the first column
of U. Francis [33] also observed that

(3.4.1) (H—nl)(H—w1nl)e, = mne+naeq + nses.
From Theorem 3.2 we have
ZOR® = QWQWRARY = (H — 1) (H — v,1) = H? — 2Real(vy)H + |n|*I.

This implies that 77,72, and 75 are real numbers when v is the complex conjugate
of v;. Thus, in theory, two consecutive QR steps with a complex conjugate pair of
shifts may be applied in real arithmetic by computing the similarity transformation
H® = (Z)YTHZ®. But there is a more efficient manner in which to apply a
complex conjugate pair of shifts. By the Implicit Q Theorem Francis concluded that
only the values of 71 5 3 are needed since only they are used when computing the first
column of a QR factorization of (H — inI)(H — 1»1I).

Suppose that W, is a Householder reflector that transforms the vector defined
by the right hand side of equation 3.4.1 into ||n1e1 + 72¢2 + 73es|le;. Computing
WJ HW, has the unfortunate side affect of destroying the Hessenberg structure in
the leading principal sub-matrix of order four. The implicitly shifted QR iteration
is defined by computing a Householder matrix W; so that (W--- W})TH Wy---W;
for 2 = 0,...,n — 1 is an upper Hessenberg through its first ¢ columns. It may be
easily shown [35] that Wie; = ey for 1 <4 <n —1 and so Wy--- W,_1e7 = Wye; =
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|ln1€e1+m2e2 +n3es||er. Hence, as long as H is an unreduced upper Hessenberg matrix,
the explicit and implicit QR-iterations are the same.

Finally, the QR algorithms of EISPACK [82] and LAPACK {1] also implicitly apply
Wilkinson’s shift. Implicitly applying a shift avoids subtracting the shift from the
diagonal elements of H, possibly preventing loss of information due to cancelation.
An example of this is presented in § 5.3 of Chapter 5. We also remark that a number of
shifts may be implicitly applied. This is the basis for the multi-shift QR-iteration [8]
of Bai and Demmel. Both Dubrulle [27] and Watkins [96] discuss the multi-shift
algorithm and present explanations of why the algorithm performs poorly when the

number of shifts applied is large.

3.4.4 Computing Eigenvectors and Reordering the Schur Decomposition

Suppose that A € R**" is reduced to upper quasi-triangular form by the QR algo-

rithm:

(3.4.2) QTAQ =

Ri R
111 f?u = f{’
0 Ry

where () is the orthogonal matrix computed by the algorithm. Equation (3.4.2) is
a Schur form for A of order n where the sub-matrices E;; and Ry, are of order k&
and n — k, respectively. Assume that the spectrums of Ry; and Ry are distinct. In
practice, the order in which the computed eigenvalues of A appear on the diagonal of
R is determined by Theorem 3.5.

If all the eigenvectors of A are required an upper quasi-triangular matrix S may
be computed so that RS = SD where D is the quasi-diagonal portion of R. It follows
that AQS = QSD. Further details are considered by Demmel [24] and Golub and
Van Loan [35].

In many situations, only a small number, say k, eigenvectors are requested. If
the corresponding eigenvalues are found in Ry, then the first & columns of () are an
orthogonal basis subspace corresponding to the eigenvalues of Ry;. The eigenvectors
are easily determined by computing those of Ry;. Suppose that R;;S; = S1D; is a
quasi-diagonal form; then AQS; = Q51 D;.

If eigenvalues of interest are located in Ry and a basis for the associated eigenspace
is wanted then we must either increase the number of columns of () used or somehow
place them at the top of R. Algorithms for re-ordering a Schur form accomplish this

task by using orthogonal matrices to move the wanted eigenvalues to the top of R.
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The recent work of Bai and Demmel [9] attempts to correct the occasional numerical
problems encountered by Stewart’s algorithm [87] EXCHNG. Their work was moti-
vated by that of Ruhe [68] and that of Dongarra, Hammarling, and Wilkinson [25].
Both algorithms swap consecutive 1 x 1 and 2 x 2 blocks of a quasi-triangular matrix
to attain the desired ordering.

Suppose that the matrix R of equation (3.4.2) is of order two. EXCHNG constructs
a plane rotation that zeros the second component of the eigenvector corresponding
to the eigenvalue A\; = Rzy. A similarity transformation is performed on R with
the plane rotation and the diagonal blocks are interchanged. We refer to a strategy
that constructs an orthogonal matrix and performs a similarity transformation to
interchange the eigenvalues as a direct swapping algorithm.

Consider the following alternate iterative swapping algorithm: Perform a similar-
ity transformation on R with an arbitrary orthogonal matrix followed by one step of
the QR-iteration with shift equal to A,. The arbitrary orthogonal similarity trans-
formation introduces a non-zero off-diagonal element in the (2, 1) entry so that the
transformed R is an unreduced upper Hessenberg matrix with the diagonal blocks
coupled. Lemma 3.1 implies that the (2, 1) entry is zeroed since an eigenvalue is used
as a shift and hence A\; and A; are switched.

If the order of Ry, is equal to two, EXCHNG uses the iterative swapping strategy
using a standard double shift to re-order the diagonal blocks. The direct swapping
algorithm, instead, computes an appropriate orthogonal matrix by computing the QR
factorization of a basis of two vectors that span the desired invariant subspace. The
reader is referred to [9, 25] for further details.

An example and explanation for the occasional failure of Stewart’s algorithm is

considered in § 5.4 of Chapter 5.
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Chapter 4

Re-starting an Arnoldi Iteration

The previous two chapters considered in detail two fundamental algorithms for com-
puting approximations to the eigenvalues of A. The Arnoldi/Lanczos algorithms
are appropriate when the matrix A is so large that storage and computational re-
quirements prohibit completing anything but a length k¥ < n factorization with
Algorithm 2.2. If only a small subset of the eigenvalues are desired, the length k
Arnoldi factorization may suffice. The analysis of Chapter 2 indicates dictates that
a strategy for finding k eigenvalues in a length k& factorization is to find an appro-
priate starting vector that forces fi to vanish. However, working in finite precision
arithmetic generally removes the possibility of the computed residual ever vanishing
exactly—even if a length n factorization is built.

The QR algorithm, on the other hand, computes an approximation to a real Schur
decomposition of A. All the eigenvalues of A are approximated and the eigenvectors
are readily available. Theorem 3.4 of Chapter 3 shows the relationship between
the Arnoldi/Lanczos and QR algorithms. In exact arithmetic, when using the same
starting vector, both algorithms generate the same orthogonal and upper Hessenberg
matrices. Forcing the residual to zero for the Arnoldi/Lanczos algorithms has the
effect of deflating a sub-diagonal element during the QR algorithm.

The idea of re-starting the Arnoldi iteration is motivated by Theorems 2.1 and 2.5.
Our goal will be to construct a starting vector that is a member of the invariant
subspace of interest. Theorem 2.5 then gives that the residual vector associated with
the truncated Arnoldi factorization vanishes. This chapter considers two re-starting
variants. The first variant, introduced by Saad [74], explicitly re-starts the Arnoldi
factorization and is the subject of § 4.1. The second approach is to implicitly re-
start the factorization. This IRA-iteration, introduced by Sorensen [83], is the subject
of § 4.2. A numerical example is presented in § 4.3 that serves to illustrate how
both variants perform in practice. The important subject of polynomial iterations or

acceleration methods is examined in § 4.4. This includes the polynomial iterations of
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Saad and a careful look at the IRA-iteration. Finally, § 4.4.3 examines an interesting

explicitly re-started approach recently introduced by Scott [80].

4.1 Explicitly Re-starting the Arnoldi Iteration

Suppose that k < n eigenvalues of A require approximation. As explained in § 1.2.1
of Chapter 1, the k eigenvalues of A of interest are called the wanted ones. The ERA-
iteration starts by building an Arnoldi factorization of length k£ + p for some positive
integer p. An improved starting vector is then obtained by using a specific linear
combination of the columns of Vi;,. The linear combination is determined by the
spectral information of Hy.,. The ERA-iteration is defined by repeating the above

process. Algorithm 4.1 outlines the procedure followed by some comments.

Algorithm 4.1  (Explicitly Re-started Arnoldi Iteration)

Input: An unit vector v{l).

1.1 For y = 1,2,... until convergence

2.1 Build an Arnoldi factorization of length k + p given a starting

vector 'v(] ).

j 16) .
A‘/k(i V}c+ka+p + fki])6:£+71 )
2.2 Compute the decomposition :

H l(c]-gp ql(c]-l?p - ql(c-ng l(fQP

where (Q,E]_BP, D,(‘]_BP) 1s a quasi-diagonal form for H,gj) ordered so

that the wanted eigenvalues are in leading portion of Dk+p ;

2.3 If £ wanted eigenvalues {0, ])} _, of Hk+p have converged then

exit the current loop ;

2.4 Compute the unit vector : (] - Vk(i)], (7)
where s) 7§'j)A.',£Q,,631 + -+ ’Y;E')‘ /(g.g,,fk and ||s ])” = 1.
1.2 End For
1.3 If desired, compute the Ritz vectors 1(]) Vk(il) S;
where H}EQ;) 5. = 5(7)9(

We briefly address the issues of determining convergence, the choice of p, and how

the coefficients 'y(J ) for i = 1,..., k are selected.
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An eigenvalue of H EQP (or equivalently, a Ritz value of A) is converged when it
satisfies the stopping criterion of § 2.5 of Chapter 2. A practical implementation of
Algorithm 4.1 would include the deflation of converged Ritz values during the course
of the iteration. Chapter 6 discusses deflation rules in detail.

The choice of p is usually a tradeoff between the length of a factorization that
may be tolerated and the rate of convergence. From the results on the convergence of
Krylov spaces in § 2.6, the accuracy of the Ritz values typically increases as p does.
However, for increasing p, the number of Arnoldi vectors stored as well as the size
of the Hessenberg matrix increases. For most problems, the size of p is determined
experimentally.

The selection of the expansion coefficients is the most unsettling decision that
needs to be made. Saad first suggested [74] choosing the coefficients so that the
slowest converging Ritz vectors are favored the most. For example, let :y,(j) be the
Ritz estimate for the i-th wanted Ritz value during the j-th iteration of the loop. The

7§j ) are the properly normalized 71(

7 that result in the unit vector s9). The use of
polynomial filters that better employ the spectral information of H ,(Ci),p to determine
an improved starting vector is addressed in § 4.4. Since the new starting vector
computed at line 2.4 is a linear combination of the columns of V,fi)p, there is a unique
vector cry, € RFYP such that the relation Kjq, (A, 'vij ))ck+,, = vy“) holds. In other
words, the new starting vector is determined by applying a polynomial of at most
degree k + p — 1 in A to the current starting one.

Finally, Saad [78, page 234] suggests using a deflated algorithm when computing
k > 1 Ritz values. The idea is to compute one Ritz value and approximate Schur
vector at a time. The process uses an ERA-iteration to compute an approximate
Ritz pair—taking care that the Arnoldi vectors are orthogonalized against the ap-
proximate Schur vectors. During each cycle of the iteration, the approximate Schur
vectors are kept in the leading portion of Y/;(j_)I,, and the corresponding part of H {,i)p 1s
upper quasi-triangular. As each Ritz value converges, the corresponding Ritz vector
is orthogonalized against the approximate Schur basis to obtain another approximate
Schur vector. This orthogonalization procedure is further discussed in § 6.5 of chap-
ter 5 within the context of deflation. When the converged portion of the Arnoldi
factorization of the j-th cycle of the iteration contains a basis for an approximate
invariant subspace of dimension k, the deflated algorithm is halted. This procedure,

analogous to the one used by Scott [80], is considered in more detail in § 4.4.3.
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4.2 The Implicitly Restarted Arnoldi Iteration

The IRA-iteration is motivated by re-starting the factorization in an émplicit manner
as suggested in § 3.2.2 of Chapter 3. The scheme is called implicit because the updat-
ing of the starting vector is accomplished with an implicitly shifted QR mechanism on
H,. This will allows us to update the starting vector by working with orthonormal
matrices that live in R¥** rather than in R"*".

The iteration starts by extending a length k& Arnoldi factorization by p steps. Next,
p shifted QR steps are performed on Hyy,. The last p columns of the factorization are
discarded resulting in a length k factorization. The iteration is defined by repeating
the above process until convergence.

As an example, suppose that p = 1 and k represents the dimension of the desired
invariant subspace. Let p be a real shift and let Hpyy — pf = QR with @) orthogonal

and R upper triangular matrices, respectively. From equation (2.2.1) of Chapter 2,

(A= 1 D)Vipr = Vi1 (Hipr — pl) = frrr€is,
(A— I VWip1 — Vil QR = flc+1€{+1a
(A= pD)(Vi1Q) = (Vi Q)(BQ) = frsreiy; @,
(4.2.1) AWVin@) = (Vern QRQ + pI) = frpref,Q-

The matrices are updated via V&, — Viq1Q and Hf; « RQ + pl and the lat-
ter matrix remains upper Hessenberg since R is upper triangular and () is upper
Hessenberg. However, equation (4.2.1) is not quite a legitimate Arnoldi factorization.
Equation (4.2.1) fails to be an Arnoldi factorization since the matrix fry; el,1Q has

a non-zero k-th column. Partitioning the matrices in the updated equation results in

HY hit
(4.2.2) AlVE oty ] = [ i ] BTk
3 41 k k+1
[ ] [ ﬁlj+1€£ Ck41
+  Jrt [ Crkt1€F V41 } ;
where o441 = e;fﬂQek and 41 = ff;},rHQﬁkH- Equating the first k£ columns of

equation (4.2.2) gives
(4.2.3) AV}: = VJHIT + (/Blj-}-lvlj+l + O'k+1fk+1)€£'

Performing the update fi7 | « Bfof +0oy fi, and noting that (V;" )7 fi£.; = 0t follows

that equation (4.2.3) is a length & Arnoldi factorization.
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The following elementary but technical result shows that the previous idea may
be extended for up to 1 < p < k shifts and a new length £ Arnoldi factorization
remains. A similar result was proved by Paige, Parlett and Van der Vorst in Lemma

1 of [58] for the Lanczos factorization.

Lemma4.1 Let AV, = Vk+,,Hk+p+fk+,,ef+p be a length k+p Arnoldi

factorization where Hyy, is an unreduced upper Hessenberg matrix. It

(A H - fi)

=1
then
bo(A)\Vegp = Vk+p"/’p(Hk+p)
(4.2.4) + Zd)m ) femtbp—i(Hetp),

where 15;(A) = [E_y (A — i) and 97(A) = [Ty (A — o).

Moreover,
(4.2.5) U, (AWVe = Vigptp(Higp) [ €1 €y - €L } .

Proof The proof is by mathematical induction. Define m = k+p and the subscripts
are suppressed on Viy, and Hyy, for the proof. Since 1y(A)V = Vipi (H)+ fe¥ where
P1(A) = XA — py, the base case for p = 1 is established. Assume the lemma’s truth
for polynomials ;(A) of degree j < p. Let ¢,41(A) = (A — pp41)p(A). Using the
induction hypothesis, it follows that

bp1(A)V = (A =yl ) (A)V
= (A—/I'I'-I-II){VI/)P +Zs/)7+1 m"/)p—,‘i(H)}
= V(H—/lmf)'t/)p( )+ff‘,,u¢’p( )
+ (A= ppal) Z%H ) femtbp—i(H)

p+1
= V,l/)p+1 H) + Z ‘7[);)—-:11 m l/)l"i'l 7(H)
1=1

which the desired result.
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Since H is unreduced it follows that eX1),_;(H)e; = 0 for i+ p—1 > j. Moreover,
the last matrix on the right-hand side of equation (4.2.4) is zero through its first k
columns, equation (4.2.5) is established. O

Denote the QR factorization of ¢,(Hyy,) = Z 7@ Since H k+p 18 an unreduced
upper Hessenberg matrix, el v, (Hyyp)e; = 0 for i + p > j and hence Z () ghares this

same property. Partitioning

_ T(P) M.
— (») ) k r
sty = (20 2] [
allows us to rewrite equation (4.2.5) as
(4.2.6) G AV = Vi, 20T,

In words, an IRA-iteration is equivalent to performing simultaneous iteration on the
matrix V; while working only with matrices of order & + p ! The column space of
Vk_,_,,Z,Ep ) is an orthogonal basis for ¢,(A)Vi. This is analogous to the well known
connection between subspace and QR-iterations. Post-multiplication of an Arnoldi

factorization of length k + p with Z®) results in
AW+,,Z(”) - ‘/sz(z»)(Z(//)))THMZ@) + fk,+p€Z+,,Z(p)
Equating the first £ columns results in
AV = VTH + fier.
In direct analogy with the single shift case, the updated residual is
flj- = ﬁlekﬂfZ(p)@kH + O'I(cp)fkﬂn

where 8} = (ZWepy,)T Hipy Z) and (r,(v") = e1,,Z2®e;. The norm of ff is easily

seen to be \/(A)2 + ()2 I
Application of the shifts is performed implicitly as in the QR algorithm. If the

shifts are in complex conjugate pairs, the implicit double shift is used to avoid complex

arithmetic. The following procedure outlines the scheme.

Algorithm 4.2  (Implicitly Re-started Arnoldi Iteration)
Input: A length k& Arnoldi factorization AV,C(I) = Vk(l)H ,El) + f,El)e{.

1.1 For j =1,2,... until convergence
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2.1 Extend the length k Arnoldi factorization by p steps :

A‘/}c+p ‘/k+p k+p + fk+pfk+p )
2.2 If k wanted eigenvalues {H _, of Hk+, have converged exit the

current loop ;

2.3 Apply p implicitly QR steps with shifts ;1,5”, e ,,u () to Hkﬂ
obtain H,ﬁQ,)Z(f') = Z(”)H,Eﬂ;l) ;

2.4 Update the length k& + p Arnoldi factorization of Line 2.1 :
AV 20 =y 7@ giry o g9 T 7

2.5 Obtain a length k£ Arnoldi factorization by retaining only the

first k columns of the factorization in Line 2.4 :
AVk(J'-H) — ‘/lc(j+1)HIE~j+1) + fl‘(,-j+l)€k7-‘
1.2 End For

1.3 If desired, compute the Ritz vectors 1 Vkﬂ) ,])
where H,Ei)p 1) = s,

One cycle of the iteration is illustrated in Figures 4.1— 4.3. Theorem 3.4 implies

that after each cycle of the j loop,

,U§7+1) — ‘/A(H-l)

= V ‘Z(I) €1,
(A)Vk_}_pfl, (Theorem 3.4)

— (A)( (J)
(a)- w;,“( Joi”,

71'(A)‘

where ‘«/);()j)(/\) = 70\ — ,:.ﬁ“) (A = /1};”) with 70) a normalization factor. The

results of Theorem 3.5 determine the rate of convergence of the IRA-iteration given a

€1,

(4.2.7)

set of shifts. Recall the example at the end of § 3.2 concerning a specific choices for ¥

(J) to

and P,, used by Theorem 3.5. The example implies that Algorithm 4.2 drives
zero if the discrete min-max problem (3.2.1) of Chapter 3 is solved. If the sequence of
shifts {uﬁ"’, . ,,ug)}f:l defining the polynomial P;,(X) = ¢ (A)--- (X} is a good
approximation to W(A) = (A — Ag4y) -+ (A — A,), then the IRA-iteration converges to
the desired invariant subspace. Theorem 3.5 implies that the magnitude of the ratio

of ¥(Ax) to W(Aryy) gives the convergence rate.
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bemmccemcrmresct e —e————————

-— ktp —» -——p —— o | e [}

Figure 4 1 The set of rectangles represents the matrix equation

‘/k(i)p ,EQP + fk Y€ty of an Arnoldi factorization. The unshaded region on the

right is a zero matrix of k£ + p — 1 columns.

- p —e

e kP - | —i—— P —=

Figure 4.2 After performing p nnphutly shifted QR steps on H,£+p, the
middle set of pictures illustrates V Z( (Z )TH(] Z) 4 jk])pck_l_pZ(”) The

last p 4 1 columns of fi ¢ k+pZ( are non-zero because oi the QR-iteration.

- > — J

Figure 4.3 After dlstldmg the last p columns, the final set represents
V(]H)H(’H) + f(H'l e} of a length k Alnoldi factorization.
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Numerous choices are possible for the selection of the p shifts. One immediate
choice is to use the p unwanted eigenvalues of H, ,SQP This ezact shifting scheme and
others are discussed in § 4.4 on polynomial iterations. Exact shifts are equivalent to
Rayleigh quotients: If H, ﬁ,,s = s then the identity (Vk(i)ps)TAV}C(i)ps = ¢ follows from
Arnoldi factorization of length k + p. Unlike the QR-iteration, the IRA-iteration or
partial QR-iteration, does not have access to the spectral information necessary for
the rapid convergence of the practical QR algorithm.

As for the ERA-iteration, the number of shifts to apply at each cycle of the above
iteration is problem dependent. The only formal requirement is that 1 <p <n — k.
However, computational experience indicates that p > k is preferable. Chapter 7
discusses the many tradeoffs when trying to select the size of p relative to k.

The following result and Lemma 4.1 were communicated* by C. A. Beattie!.

Theorem 4.3 Assume the same hypothesis of Lemma 4.1. Suppose that
Y1 Pl
{pi}™, is a set of shifts such that if y; has a nonzero imaginary part, then

fi; is also a shift for some ¢ # 5. If

P

P(A) = JIO =),

=1

and ¢, (A) is non-singular, then
(4.2.8) Ki(4,01)" = ¢, (A1) KA, 0)*,
where vf = Vi, ZWe; and 1, (Hyy,) = Z@T®) is a QR factorization.

Proof Suppose that w € 1,(AT) 1K (A,v1)*. Then w = ¢,(A4)"Ty from some
vector y € Ki(A,v))t. If z € ¥,(A)Kr(A, ) then z = ¢,(A)z for some vector
x € K(A,v1). Thus,

wlz = ?/T'lpp(A)_l"/’p(A)?/ = :L'T:‘/ =0,
and hence w € {1,(A)Kr(A,v1)}* establishing

(4.2.9) Yo(AT) KA, )t C {dp(A)Kk(A, 01)}

*Workshop on Krylov Subspace Methods and Applications, Raleigh, NC, March 17-18, 1995

tDepartment of Mathematics, Virginia Polytechnic Institute and State University
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Since ¢,(A) is nonsingular by hypothesis, it follows that ,(AT)™! exists and hence
dim{s,(AT) 1K (A, 01)t) = dim{Ki(A4,v1)*1},
and
dim{y,(A)Ki(A,v1)} = dim{Ki(A,v)}.

Along with equation (4.2.9), the previous relations imply that {¢,(A)Kk(A,v1)}* =
p(AT) T k(A 01) "

By the second conclusion of Lemma. 4.1, equation (4.2.5),

Yp(A)Kk(A,v1) = R{p(A)Vi}
= R{Vit(H) [ 1 &2 - e ])
= R{Vk+,,Z(")T("')[61 eg - 6k]}>

where a QR factorization of t,(Hyy,) is ZMT®.  The theorem is proved since
Y (A)KK(A,01) = Ki(A, o) where vf = V1‘:+,,Z(7’)f:1. ]

Suppose that A is non-singular and that the grade of v; is n; in other words, the
dimension of K, (A4,v;) is n. If AV, = V, H, is an Hessenberg decomposition with
Vier = vy then K, (A7T,V,e,) = Ki(A, v1)*. The theorem shows that analogous to
the duality of the QR-iteration discussed in § 3.3, during each cycle of an IRA-iteration,

another IkA-iteration takes place on the Krylov subspace dual to Ki(A,vy).

4.3 Explicit and Implicit Re-starting

This section presents a striking example that compares the ERA- and IRA-iterations.

Let A € R0 be zero everywhere except for diagonal elements
1] = ].,()522 = 1,033 = O,(Y44 = 0,(,\',;1j = (l - J.) . 1()_1, fOI’ 'l = 1, e ,9,

and ones on the sub-diagonal. Suppose that the vector e; is used to start both
Algorithms 4.1 and 4.2 with £ = 2 and p = 2 and the interest is to compute the two
eigenvalues equal to one. Using an exact shift strategy, Algorithm 4.2 computes the

approximate partial real Schur decomposition AQ; = (J2 K2 where

94919 95789

R, , PP )
—2.6952- 1073 1.0508
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with eigenvalues equal to 1 & 41.129168612228906 - 10~8. The number of iterations
needed was four and a total of ten matrix vector products were computed.
But Algorithm 4.1 stagnates. In fact, the same information was computed during

every cycle of the iteration. For y > 1,

1 000

; 1 100
HY = |

0100

0 010

The MATLAB function EIG computes the two eigenvectors

sf = [0 57135 57735 57735 |,
s§ o= [17-1071® —57735 —.57735 —.57735 |,

corresponding to the two eigenvalues equal to one. If the expansion coefficients are
chosen equal to the corresponding normalized Ritz estimates, the vector s\ = ey is
computed during every cycle of the ERA-iteration.

The major drawback of using a linear combination of the eigenvectors of H ,(c]_zp is
that they may form a poor choice for the starting vector. If H, ,(CQP is defective, then
there might not be enough eigenvectors corresponding to the wanted eigenvalues. As
the previous example demonstrated, computing in finite precision arithmetic blurs
this sharp characterization. A pair of approximate eigenvectors is produced that are
aligned to working precision. On the other hand, using an expansion in terms of the
Schur vectors of H,Ei)p is a better behaved numerical process. As explained in § 4.4.2
the IRA-iteration implicitly uses a Schur basis of H,SQP. Golub and Wilkinson [38]
examine the many practical difficulties involved when computing invariant subspaces.
As the above example shows, computing in floating point arithmetic generally removes
the possibility of ever detecting a defective matrix.

Among the several advantages an implicit updating scheme possess over an explicit

one are:

e Only p matrix vector products are required during each iteration instead of
k+p.

e Maintaining a prescribed level of orthogonality for only p additional Arnoldi

vectors during each iteration instead of k + p.
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o Re-starting with a linear combination of Schur vectors instead of eigenvectors.
e Ability to avoid explicit application of 1 (A).

e The incorporation of the well understood numerical and theoretical behavior of

the practical QR algorithm.

The last point was first mentioned by Sorensen [83]: This thesis makes a detailed
study of the relationship with the QR algorithm. In particular, application of a shift
may result in one of the sub-diagonal elements of ,EjJr)p becoming small. The impact
of the deflation strategies associated with the QR-iteration upon the IRA-iteration is
the subject of chapter 6. The convergence of the iteration to selected portions of
the spectrum of A may then be answered by appealing to the theory developed in

Chapter 3.

4.4 Polynomial Iterations

As explained in the § 4.2, each iteration of Algorithms 4.1 and 4.2 implicitly re-
places the starting vector of an Arnoldi factorization with ¢(A)v; where subscripts
are dropped for ease of notation. If A is diagonalizable where z; for y =1,...,n are

the eigenvectors, then it follows that vy = 2;(; + -+ + 2,(, and then

(441) ’l,Z)(A)'Ul = 21'(#()\1)(1 +- 4+ Z1L¢'()‘7L)C1L-

Assuming that the eigenpairs (z;, A;) are ordered so that the £ wanted ones are at the
beginning of the expansion, a polynomial of degree p is sought so that the

(1.4.2) max [¢Pp(A)] < i_min [ (A:)]-

1=k+1,...,n =1,....k

A good polynomial ¢()) acts as a filter. Components in the direction of unwanted
eigenvectors are damped or equivalently, components in the direction of wanted eigen-
vectors are amplified. We remark that according to Theorem 3.5 the convergence of
the QR-iteration is also dependent upon the same discrete min-max polynomial ap-
proximation problem.

It should be emphasized that even if a good approximate solution is computed for
the discrete min-max problem defined by equation (4.4.2), the unwanted products
¥(A;)¢; may not be small. This can only happen if the unwanted coefficients (; are

large. As we demonstrated in § 2.6 of Chapter 2, if the corresponding eigenvalue
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i is poorly conditioned, then ¢; may be large. The conclusion is that unwanted
components in the direction of an eigenvector corresponding to a poorly conditioned
eigenvalue may not be expected to become negligible. In addition, if A is defec-
tive, it may not possess enough eigenvectors corresponding to the wanted eigenvalues
M, ..., . Numerically, problems are encountered when a basis for the desired in-

variant subspace is poorly conditioned.

4.4.1 The Polynomial Iterations of Saad

The acceleration techniques and hybrid methods presented by Saad in Chapter seven
of [78] are motivated by attempting compute a reasonable solution of the min-max
problem defined by equation (4.4.2). Saad suggests a two stage process for calculating
approximations to wanted eigenvectors.

First, an Arnoldi factorization of length k + p is built. The spectrum of the upper
Hessenberg matrix of order k + p is used to determine a polynomial p,,(}) of degree
m. Examples include using the Chebyshev [76], based on Manteuffel [50] scheme, and
least squares [77] polynomials introduced by Saad. Second, the polynomial p,.(A)
of degree m is applied to a linear combination of the wanted eigenvectors of the
upper Hessenberg matrix of order k + p. The resulting vector is said to be filtered.
A Ritz vector is then determined using the the filtered one. Within the context of
Algorithm 4.1, the filtered starting vector is just another choice for s in line 2.4.
The above process is repeated until k& wanted Ritz values converge. As mentioned
at the end of § 4.1, the above iterated process may be used within a deflated ERA
algorithm.

4.4.2 TImplicit Polynomial Iterations

The IRA-iteration implicitly applies a polynomial iteration to a linear combination of
Schur vectors spanning a wanted eigenspace of Hyy,. This section presents several
results that serve to motivate the the exact shifting strategy introduced in § 4.2. The
first theorem presented is a generalization of Lemma 3.10 proved by Sorensen [83].
The major difference is that there is no assumption on the existence of a basis of

eigenvectors for the desired invariant subspace. Only a Schur basis is used.

Theorem 4.4 Suppose H € R™*™ is an unreduced upper Hessenberg

matrix corresponding to a length m Arnoldi factorization AV = VH+ fel
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and that the eigenvalues of H are in the disjoint partition

{01, v ,Hk} U {9k+1, vy H'm}-
Assume that the complex conjugate pairs of eigenvalues are kept together;
0; = 0; implies that 7,j < k or 7,7 > k.
If m — k QR steps are performed with the shifts 6py1,..., 05, producing an

orthogonal matrix € R™*™ then

Hyy Hy
4.4.3 THQ = ,
T
where the eigenvalues of Hyy are Oxyq,...,0n.

Moreover, the updated starting vector produced by Algorithm 4.2, given

an exact shifting strategy, 1s
(444) VQG] & R(VQ]Zl),

where Q1 = Qles,...,ex] and Hy1Zy = ZiT1 is a partial real Schur de-

composition and
(4.4.5) AVQ1) = (VQu)Hu + (ef,Quex) fei,
is the updated Arnoldi factorization of length k.

Proof The matrix equation (4.4.3) is a direct result of Theorem 3.5.
Partition @) = [ Q1 Q2 } where HQy = Q1 Hq1. Let HywZiy = Z1Ty be a real

Schur decomposition and it follows that
VQer =VQie1 = VQ1Z121T€1 = Vi Zwy,

where y = ZTe;. Partition the updated length m Arnoldi factorization of the hy-

pothesis as

Hll H12

(446) AV[Q Q] = Ve Q2][ 0 Hy

}+fe£[ca1 Q: ]
Equating the first k£ columns of equation (4.4.6) results in

AV@Q:) = (VQI)HU‘F(Cz;Qlek)fe{a
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since, by construction, [ Q1 Q2 ] , is zero below that (m — k)-th sub-diagonal. O

Using the exact shifting strategy during the IRA-iteration, replaces the starting
vector with a linear combination of the wanted approximate Schur vectors. The
ERA-iteration also has the same goal, but the IRA-iteration performs this replacement
implicitly in a stable fashion using a Schur basis of H. In addition, the IRA-iteration
avoids the need to re-start the next factorization from scratch. Note that as m — n,
Theorem 3.5 implies that the exact shifting strategy places improving approximations
of the wanted eigenvalues in Hj; in a stable manner.

The restriction that keeps the complex conjugate pairs of eigenvalues together is
only needed so that the iteration may be done in real arithmetic. The hypothesis of
Theorem 4.4 concerning the disjoint partition of the eigenvalues of H may be removed.
A result by Miminis and Paige [53, pages 391-395], briefly mentioned in § 3.1, makes
this hypothesis superfluous. They prove that if m — k QR steps are performed then
the matrix equation (4.4.3) results if and only if the m — k shifts are eigenvalues of
H, regardless of their multiplicity.

Algorithm 4.2 with the exact shift strategy, builds an orthogonal basis for a num-
ber of Krylov subspaces simultaneously. The following is a slight generalization of

Theorem 3 proved by Morgan [54].

Theorem 4.5 Assume the same hypothesis and notation as Theorem 4.4
with the additional hypothesis that f # 0. Suppose that m — k QR steps
are performed with the shifts #5.q,...,6,,. Let M be a positive integer

less than or equal to n — m and greater than k. If
AVt = VtH 4+ f'+c:£4,

is the length M Arnoldi factorization that results from extending the

compressed factorization of equation (4.4.5) and HT is unreduced then
(4.4.7) R(VY) = Span{VQ, Az,..., AM 2}

holds for each Ritz vector z; = V's; such that Hs; = s;0; for y = 1,...,k.
In particular, if the eigenvectors sy, ..., s; of H are linearly independent,
then

(4.4.8) R(V*) = Span{z,...,z, Az, ..., AM=Fkz1,
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Proof Partition the eigenvalues of H as in the hypothesis of Theorem 4.4. Let
(s;,8;) be an eigenpair for H where ||s;]| = 1 and set z; = V's;. Define v, 11 = f/||f|l
and V'te; = v;’ for y =1,..., M. Note, that by Theorem 2.4 of Chapter 2 it follows
that vif,; = ¥r(A)vf for some polynomial 1x(A) of degree k.

Note that by equation (4.4.5) of Theorem 4.4, we have vf,; = vi41. It also follows
that Ao, = A'Y(A)of € Kigipr(A,vf) for ¢ = 1,..., M — k — 1 which implies
that

(4.4.9) Span{VQ1,v{,,,..., AV * i} R{V*}.

We now show that these two sets share the same dimension. Suppose that VQiy;1 +
Kn—i(A,vf,)y2 = 0 for some y = [y, yI]T € RM. Thus, there exists a polynomial
() of degree less than M so that ¢¥(A)vi = 0. However, since HT is unreduced
the grade of v{ is at least M and hence y = 0 which implies that the two sets in
equation (4.4.9) are equal.

Using mathematical induction we show that
A'z; € Span{z;,vf.,..., A7 vf )
for2=1,...,M — k. From the length m Arnoldi factorization, it follows that
Azj = zi0; + f(ens5) = 28 + vmr1(en,5;) | ]| € Span{z;, v},

establishing the base case. Suppose that the result is true for positive integers ¢ — 1.

The inductive hypothesis implies that
A'z; € AATz
: i—2
€ ASpan{zj,vi.,,..., A %}
€ Span{z;, Ulj+17 R A"lvxfﬂ},

and the desired result follows. Now, since z; € R{VQ1} and vf,; = ¢p(A)ov] it
follows from the established equality of the two sets in equation (4.4.9) that

(4.4.10) Span{VQy, Az;,..., AM %2} < R{V*t}.

Using a similar argument as the one that followed equation (4.4.9), the two sets in
equation (4.4.10) are equal. The first conclusion of the theorem in equation (4.4.7) is
proved and the second one in equation (4.4.8) easily follows when the eigenvectors of

H are linearly independent. o
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The Krylov subspace of length &+ p generated during cycle of Algorithm 4.2 using
exact shifts contains all the Krylov subspaces of dimension p + 1 generated from a

wanted Ritz vector:
Krir(A, ) € Ki(A, VYTV er) = RIVEED),

corresponding to the ¢ wanted Ritz values 99 ), ceey 0,(3). Morgan infers that the method
builds an orthogonal basis for a Krylov subspace without favoring any particular Ritz
vector.

The next result shows that the polynomial implicitly applied by an IRA-iteration
using exact shifts is of minimal degree when we wish to re-start an Arnoldi factor-
ization with a vector that is a linear combination wanted spectral information of
Y.

Theorem 4.6 Assume the same hypothesis of Theorem 4.4 with the

addition that the eigenvalues of H are distinct. Let

ki

() = I (A =0
j=k+1
and denote the Ritz vectors by z; = Vs; where Hs; = s;0;. If 0, €
Span(zi,...,z) then for some polynomial ¢(A) of degree not exceeding

m—1
b = ¢(A)vl7
where ¢()) = ¥(A)x(A) for some polynomial x(A) of degree at most k—1.

Proof Let z; € K,.(A,v;). Then, for every j, there is polynomial p;(}) of degree
not exceeding m — 1 such that p;(A)vy. Thus 91 = ¢(A)v; where the degree of ¢(A)
does not exceed m — 1. Using Lemma 4.1 it follows that ¢, = ¢(A)v; = ¢(A)Ve, =
V¢(H)e;. Expand e; = s1éy + -+ + S and hence ¢(H)ey = s16(61)6 + - +
Sm®(0m ). Since ¥y € Span(zi, ..., z) it follows that ¢(0;)¢; = 0for j = k+1,...,n.
Denote the left eigenvectors of H by u; indexed so that u¥H = ;. Since the
eigenvalues of H are distinct, the biorthogonality of the left and right eigenvectors of
H gives that u?el = ulls;¢; and ufsj #0fory =1,...,m. Lemma 2.1 of Chapter 2
implies that ufe; # 0 and hence €; # 0 and so ¢(6;) = 0 for j = 1,...,m. Thus 1(})

must be a divisor of ¢(A) and the theorem is proved. ]
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Theorem 4.4 implies that an IRA-iteration using the exact shift strategy builds a
new Arnoldi factorization using only the wanted spectral information from a previous
Arnoldi factorization. Theorem 4.6 states that any other re-started scheme that uses
spectral information from an Arnoldi factorization introduces unwanted components
if the degree of the polynomial is greater than m — k. From equation (4.4.5), an
IRA-iteration with the exact shift strategy uses a linear combination of the first m —k
columns of V.

Further research on alternate shifting strategies is needed. In particular, the im-
plicit application of the Chebyshev and Least squares filtering techniques of Saad [76,
77] should be investigated. Calvetti, Reichel, and Sorensen [17] have examined the

use of Leja points during an implicitly re-started Lanczos iteration.

4.4.3 Explicitly Re-starting with Schur Vectors

Scott [80] presents an interesting version of a deflated ERA-iteration discussed at the
end of § 4.1. Suppose the first [ — 1 columns of an Arnoldi factorization are ap-
proximate Schur vectors that satisty the convergence criterion. At every cycle of the
iteration, an Arnoldi factorization of length &+ p — {4+ 1 is built where the { — 1 ap-

proximate Schur vectors occupy the leading portion of the factorization. For example,

constder the j-th cycle of the iteration where V}C(i)p =1| Vi Vk(il)—l 4+ | and H ,SQP =
T M,_ : :
101 _(j)l ! ] are generated. The leading portion of both Vk(i)p and H ,EQP de-
k4p—I+1

ﬁ_n(? an afipyoximate partial real Schur decomposition of A. Let E/gi)p—l-fl Zlgj-l-)p-—l+1 =
,Eﬂ_)p_, 41 T,Si)p_, +1 be a real Schur decomposition ordered so that the wanted eigenval-
ues are in leading portion of T}EQP_,H. When the first column of Vk(i)p—lﬂ Z,EQP_IH
satisfies the convergence criterion, it is accepted as the [-th approximate Schur vector.
Scott’s version differs from Algorithm 4.7 given below at Line 3.2. The real Schur
decomposition computed by Scott is ordered with the eigenvalues in descending order
of magnitude along the diagonal blocks of T,Si)p_, +1- Scott also provides what appears
to be robust implementions of almost all the major explicitly re-started Arnoldi vari-
ants; Block, Chebyshev acceleration, and pre-conditioned Arnoldi. The resulting
software is available as the code EB12 in the Harwell Subroutine Library [2]. The

following procedure summarizes Scott’s re-started single vector approach.

Algorithm 4.7
(1)

Input: An unit vector v;”’.
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1.1 Forl=1,...,k
2.1 For j = 1,2,... until convergence

3.1 Build an Arnoldi factorization of length k + p — [+ 1 given

a starting vector 'ul(]) in the [-th column of Vk(i)p :
G) gr(@) (7)) T .

AVk+p V;Cika]i-p + fk{l—rickﬂl !

3.2 Compute the real Schur decomposition :
Hlf:Qp—l-}'l Zl(cj+)p—1+1 = Zl£]+)p—l+1Tk+p I+1
ordered so that the wanted eigenvalues are in leading portion
of TISJ-l-)p I+1 9

3.3 Set

Zk(:j+)p — { Il(;l Z(J')O } )
k+p—I+1
Ty = (2 HEL 2N
3.4 Update the length k£ + p Arnoldi factorization of Line 3.1 :
AVk]) Zk+:v - VI~+I»ZA+1)kaz:1 + fk+1l k+1)Zk+7) 1

3.5 Obtain a length [ Arnoldi factorization by retaining only the

first [ columns of the factorization in Line 3.4 :
+1 1) G+ | i
AV = YU P 4
3.6 If the [-th column of V,(‘7+1) converges as a Ritz vector, in-

crease [ by one and go to Line 2.3.

2.2 End For
2.3 If | = k then stop.
1.2 End For

During each cycle of the iteration in Algorithm 4.7, the Arnoldi factorization
is re-started with Vk(i),p_, 41 Zyyp-t+1€1 while maintaining orthogonality against the
approximate Schur vectors already computed. Equating the last k+p—I+1 columns

of the length k + p Arnoldi factorization of Line 3.1 results in

(4411) AVk+p 41 = W lMl 1 +‘/}¢+p l+1HIE:+p 41 +fk+p6k+[) I41-

Using the orthogonality of the columns of Vk_l_i, gives that M;_, = V,_l.z‘le‘l'_)p_,Jr1 and

hence

(4412) (I ‘/I IWTI)A‘ k(i)p +1 = Vk(-|7-)p l+1Hk~}?p I+1 + fk+7)fk+p I+1
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This prompts Saad [78, page 182] to make the observation that the Hessenberg matrix
{ ,(Ci)p_ 141 of the deflated Arnoldi factorization of equation (4.4.11) appears at the front

of the Arnoldi factorization applied to (I — Vi1 V/T,)A. Thus,
Vk(i)p_m Zk+p—l+1 e1 = Kiypra (I - w*l‘/lzl)Aavl(j))ck+P—l+l’

where v,(j) = Vk(i)p_, 4161 = Vk(ﬁ,el, a polynomial of degree at most k + p — I in
(I — Vi1 V]I})A is applied to the starting vector Vk(i)pel.

In theory, there is no difference between explicitly and implicitly re-starting an
Arnoldi iteration. However, the numerical behavior of mathematically equivalent
schemes may quite different. An example of this was given in § 4.3 comparing the ERA-
and IRA-iterations. A more comprehensive numerical study comparing Algorithm 4.7
and Algorithm 4.2 is planned [48]. Another alternative is the work of Baglama,
Calvetti and Reichel [4]. They discuss a deflated implicitly re-started Lanczos itera-

tion using Leja shifts.
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Chapter 5

Numerical Stability of an IRA-iteration

This chapter examines the particulars of computing an IRA-iteration in finite precision
arithmetic. The underlying theme of this thesis is that QR- and IRA-iterations are
one and the same. The chapter discusses the numerical stability of an IRA-iteration
by appealing to that of the QR-iteration.

The concepts of the backward and forward stability of the QR algorithm are ex-
plained in § 5.1. The relevant perturbation theory associated with matrix eigenvalue
problem is the subject of § 5.2. The forward instability of the QR algorithm is taken
up in § 5.3. A connection is made with the algorithms used to re-order the Schur form
of a matrix in § 5.4. The final section of the chapter presents a sensitivity analysis of

orthogonal reductions of a matrix to upper Hessenberg form.

5.1 Backward and Forward Stability of the QR Algorithm

Robust implementations of a practical QR algorithm, such as those found in the
software packages EISPACK [82] and LAPACK [1], compute a real Schur form for a
matrix A € R™™" such that

A

(5.1.1) (A+E)Qy = R,

where Q7 Q, = I is exactly orthogonal and || E|| = ep||A||. The machine precision is
denoted by €pr. The upper quasi-triangular matrix R is that computed by a robust
implementation of the QR algorithm. The computed orthogonal matrix Q satisfies
||QTQ —1I|| = epr- In other words, the real Schur form of a matrix near A is computed.
This is what makes the QR algorithm backward stable.

Suppose that the same algorithm is computed in exact arithinetic. Let AQ = QR
denote this ideal computation. Assume that the ordering of the eigenvalues on the

diagonal of R and R is the same. We emphasize that it does not follow that

IR—RI ~ emllAl.
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Indeed, the diagonal elements of R and R may have few if any digits of agreement.
If, on the other hand, the ratio of the above norm difference and the norm of A is on
the order of machine precision, then the QR algorithm is forward stable.

In particular, consider one step of the shifted QR-iteration. Suppose H is an unre-
duced upper Hessenberg matrix. As discussed above, the computed output results

in
(H+E)Q =~ QHY,

where ||QTQ — I|| ~ e and ||E|| = ep||H||. Let HQ = QH™ be the exact QR-step

computed in exact arithmetic. Is it reasonable to expect that
|HY =AY < eml|HT 7

As we shall see, the shifted QR algorithm may be very sensitive to shift. Equivalently,
orthogonal reductions to upper Hessenberg form may be very sensitive to tiny per-

turbations in the starting vector.

5.2 Perturbation Theory

This section briefly addresses the question that a perturbation theory answers: How
does an eigenvalue and eigenvector change subject to changes in the matrix 7 An
understanding of these issues is important since it helps us determine the accuracy
of the eigenvalue approximations computed.

The analysis of § 2.5 of Chapter 2 shows that when the product of the last
component of a normalized eigenvector for Hy and the norm of ||fi| is suitably
small, the IRA-iteration has computed an approximate eigenpair. If His = s then
(A + E)x, = .0 with E = —(ef's) frzf. 1t follows that ||E|| = |eF s|Bm+1, the size
of the backward error, bounds the distance to the nearest matrix that has the Ritz
pair (&,,0) as an eigenpair. The following theorem indicates what accuracy might be

expected to an eigenvalue of A.

Theorem 5.1 Suppose that X is an eigenvalue of A nearest the eigen-
value 0 of A+ E. Denote the left and right eigenvectors for A by % and «z,
respectively, each of unit length. Then '

E|

|
A—-0] <
I

|y

+ O(IlEII")



Proof See page 68 of Wilkinson [101]. ]

The secant of the angle between « and y, the reciprocal of lyH x|, determines the
conditioning of A. If the left and right eigenvectors are nearly orthogonal, then even
if || E|| = em||All, where €y is machine precision, 6 may contain few digits, if any, of
accuracy. Note that if A is symmetric, then © = y and 8 is an excellent approximation
to A.

The question of how close the Ritz vector «; is to = is complicated by the fact that
an eigenvector is not an unique quantity. Any scaling of an eigenvector by a complex

number of unit modulus remains one.

p gl
Theorem 5.2 Suppose that AQ = Q) 0 ;{12 is a Schur form for A
22

and let A be the eigenvalue of A nearest the eigenvalue § of A+ E. If ¢

measures the positive angle between « and z, then
2| £

—_— - 2‘ .
O R O(IEll7)

Proof See Lemma 7.8 of Demmel [23]. ]
Varah [94] shows that
sep(A, Rp) < gl_l;iél} A = A,

lyH x|

where the latter bound is only defined for nonzero r1,. Thus, the conditioning of the

(5.2.1) sep(A, Ra) < |z

eigenvector problem depends upon both the distance to the other eigenvalues of A
and the sensitivity of A\. Varah also notes that both upper bounds may be significant
over estimates. Note that when A is symmetric, 71, = 0 and it may be shown that
the first bound is an equality. The conclusion we must draw is that the computation
of the eigenvalues for a nonsynuﬁetric matrix is potentially an ill conditioned process.

Multiple and clusters of eigenvalues cause further complications and the answer
is to study the conditioning of invariant subspaces. In fact, if the angle between
the left and right eigenvector approaches ninety degrees, then equation (5.2.1) im-
plies that A is not a distinct eigenvalue of A. The same result is essentially proved
by Wilkinson [102]. He shows that if A is a distinct eigenvalue of A, then a per-

turbation matrix F exists so that ) is a repeated eigenvalue of A + F' and ||F|| <

Iyl /(T lg7al). Tt lyHa

is equal to zero then A is a repeated eigenvalue of A.
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Saad [78] presents an excellent comprehensive introduction to perturbation theory
within the context of large scale eigenvalue problems. The works of Chatelin (18],
Stewart and Sun [90] are sources for more general study with many citations to the
literature. In particular, the work of Bai, Demmel, and McKinney [7] examines the
construction of the LAPACK software used to estimate the various condition numbers.

Finally, the possible ill conditioning of the nonsymmetric eigenvalue problem leads
Toh and Trefethen to suggest that the Arnoldi iteration be used to estimate the
pseudospectra of a matrix [93]. The eigenvalues of A+ E where || E]| < ¢ are members

of A’s pseudospectra.

5.3 Forward Instability of the QR Algorithm

This section investigates how the theory of Chapter 2 behaves when computing in
floating point arithmetic. By understanding what causes the forward instability of

the QR algorithm, we may possibly prevent its deleterious effects. These include:

e introducing perturbations that lead to unnecessary loss of accuracy in the com-

puted spectral information.
e Increasing the number of iterations required for convergence.

Since the last two chapters demonstrate that the IRA-iteration is equivalent to the
QR-iteration, we are directly led to an understanding of the effect applying shifts
during a cycle of Algorithm 4.2.

Parlett and Le [63] carefully examine the forward instability of the QR algorithm
on symmetric tridiagonal matrices. However, we shall see that their results appear to
carry over directly to the QR algorithm on upper Hessenberg matrices. The analysis
and numerical experiments suggest a sensitivity analysis for the orthogonal reduction
of a matrix to upper Hessenberg form.

Suppose, for the moment, that H € R™** is an unreduced symmetric tridiagonal
matrix and set HY = RQ + 71 where QR = H — 71 is a QR factorization. Denote
by Hj the leading principal matrix of order k of H = H,,. The main result proved by
Parlett and Le is a necessary and sufficient condition for the onset of forward instabil-
ity. The instability occurs if and only if the shift 7 is close to an eigenvalue of H; with
a small last component of the corresponding normalized eigenvector. Parlett and Le

present numerous examples illustrating the forward instability. Before continuing, we
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present three examples for the nonsymmetric problem that serve to motivate these
ideas.

Consider the matrix

3 1 1 -1
1 3 -1 1
5.3.1 H =
( ) 0 1072 2 1
0 0 12

Table 5.1 displays spectral information of H; the notation w;, stands for the last
component of the i-th normalized eigenvector of H.

Suppose that two separate explicit QR steps are performed on H with shifts 3 and
4. Computing in MATLAB, Version 4.2a, on a SUN SPARC station IPX results in

3 -1 —-1.4 —-1.1-107%¢

\ 1 3 —14 —7.1-10-13
5.3.2 H(3) =~
(5.32) (3) o 1 1 -1
0 0 0 3
and
9 14 14 —32-10*
. 7.1-10°13 2 ] _7.1.10-13
5.3.3 H(4) =~ ,
(5:33) (4) 0 | 9 6.7 10~
0 0 6.7-10* 3.9

where H(r) = R(r)Q(r)+ rI. The floating point arithmetic is IEEE standard double
precision with machine precision of ey = 27°2 ~ 2.2204 - 107!, The results of
equation (5.3.3) are in stark contrast to Lemma 3.1 of Chapter 3 where as those of

equation 5.3.2 conform. The last property of Lemma 3.1 implies that for shifts that

Ii Eigenvalue Condition number w; 4 J
1 4 1.2 (10"13)
2 1.999999999999 1.2 (10_13)
3 1.000000000001 1.5 O(1071)
4 3 2.8 O(1071)

Table 5.1 Eigenvalues and some sensitivity measures for H.
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are nearly eigenvalues of H, the last row of ef (R(7)Q(7) + 1) = Ael | where A is
an eigenvalue of H. We note that the eigenvalues of both matrices are still equal to
those of Table 5.1.

Let (sgk), Aﬁ’“’) be an eigenpair for Hy, the leading principal sub-matrix of order

of H, and let w;; = e{sgk) be the last component of the corresponding eigenvector.
(k)

Assume that s; is a unit vector for k =1,...,n. Parlett and Le’s analysis formally
extended for an unreduced Hessenberg matrix states that there are entries of H ()=
R(7)Q(7) 4 7I whose derivatives are O(1/w;x) with respect to changes in 7 when 7 is
nearly equal to A§’“). This analysis is corroborated when 7 = 4 since it is an eigenvalue
of Hy and w;; = 10~13. The last sub-diagonal of H should be on the order of machine
precision; however | ﬁ4| ~ 10'3¢ys. Parlett and Le also observe that a small w;x 1s an
indicator that the first & columns of H — )\,(k)l are almost linearly dependent. Since
H - Aﬁ’“’] = QR, it follows that the condition number of H; — )\,(;k)I is that of R;
where R; is the leading principal sub-matrix of order j of R. The condition numbers
k(H; — 71;) = ||H; — rL||||(H; — 71;)7"|| are displayed in Table 5.2. We believe this
geometric interpretation predicting forward instability should immediately come to
mind when considering the size of w; .

It is instructive to consider performing a QR step on H with an implicitly shifted
variant of the QR algorithm. Let H(7) be the computed result of performing the QR

step implicitly with shift 7:

2 —~1.4 14 0
. 7.1-10°18 2 1 —=7.1-10713
(5.3.4) H(4) =~ ,
0 1 2 0
0 0 0 4

Performing the step implicitly prevents the forward instability in this example.

i «(H;, —4I) «(H; —31;) |

1 1 1

2 010" 0(1)
3 O(107) o)
4 O(10'%) +00

Table 5.2 Condition numbers for the shifted matrices.
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| 1 Eigenvalue Condition number Wia l
1 2.999999999999999 0(10%) O(1071)
2 .9999990001706701 0(10%) 0(1077)
3 1.00000099982933 O(10%) 0(1077)
4 3 0(10%) O(1071)

Table 5.3 Eigenvalues and and some sensitivity measures for G.

] K(G;"—Ij) |

1 1

2 +o0
3 0(1012)
4 0(1012)

Table 5.4 Condition numbers for the shifted matrices.

Our second example shows that both explicit and implicit implementations are
both sensitive to the shift used: Let
2 1 —1 1
1 2 1 -1
0 1072 2 1
0 0 1 2

(5.3.5) G

il

with spectral information given by Table 5.3.

If Wilkinson’s shift is used, then we obtain

3 0 1071 0
. 71-10°8 2 5 82
(5.3.6) G(1) ~ R
0 1.7 .67 —.47
0 0 .94 2.3
and
3 0 0 0
. 7.1-10°B 2 .58 .82
(5.3.7) Gy ~ |
0 1.7 .67 —.47

0 0 .94 23
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Although Wilkinson’s shift shares seven digits of accuracy with two of the eigenvalues
of G, the last sub-diagonal elements of both G and G are order unity. This is predicted
by Parlett and Le’s analysis since 1077wy, I'=1 ~ .94. The condition numbers of the
eigenvalues measure the possible loss of accuracy subject to changes in the matrix
elements. Since the orthogonal matrices effecting the explicit and implicit QR steps are
only numerically so, perturbations are introduced. Sorting the computed eigenvalues

of GG and @ into ascending order gives for ¢ = 1,2

G = Gl

G = 0(1071) = |\ (G) = M(G)| = 0(1071),

where IIG' — G| =~ 107%. In words, the accuracy of the computed eigenvalues is
essentially the ratio of the norm difference of the two matrices produced by the implicit
and explicit QR-iterations and the condition number of the eigenvalue. Table 5.4 gives
an alternative measure for the amount of forward instability that the QR algorithm
may undergo.

The third and final example shows that small sub-diagonal entries are not needed

for the QR algorithm to undergo forward instability. Let

200 100 0 1

(5.3.8) Fo= 100 200 0 0 7
0 1 21
0 0 1 2

with spectral information given by Table 5.5. We also add that the matrix of eigen-

vectors for F' has condition number O(1). Computing an implicit QR step with shift

ri Eigenvalue Condition number Wi 4 J
T 300.0000056304403 o) O(10—)
2 99.9994793289591 o(1) O(10-%)
3 3.001734106345232 o(1) O(10-T)
4 .9983123303188788 0(1) O(1071)

Table 5.5 Eigenvalues and and some sensitivity measures for F.
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100 leads to

300 0 .7071 0
. Jq071 20 1 —.7071
5.3.9 F(100) =
( ) (100) 0o 1 2 0
0 0 .7071 100

Although the relative error of the shift 100 with respect to the nearest eigenvalue of F
is O(1077), the last sub-diagonal element of F(100) is O(107!). Since the eigenvalue
(and eigenvector) problem for F' are extremely well conditioned, shifting with the
numerically exact shift Xy = 99.9994793289591 given in Table 5.5 should result in an
O(ear) term in the last sub-diagonal entry of F(},). Instead,

300 3.8-107* 7071 .0051

g 7071 2.0001 1.0061  —.7071
0 1 2 —.7071
0 0 6.6-10°% ¢
is computed where ¢ = .9999994793290061. Note that the relative error in ¢ to A2

is O(107*) but that an order O(107'°) element emerges in the last sub-diagonal
entry. Once again, the sensitivity is measured by the reciprocal of w; 4 since €pws. 1=
0(10719).

In a study examining the deterioration of forward stability during an implicit
QR step, Watkins [99] investigates the transmission of the shift through the matrix.
Watkins’ analysis also shows that small sub-diagonal elements are not reliable indica-
tors for predicting the loss of forward stability. This is substantiated by the previous
examples. It is also shown that even when the QR step does undergo forward insta-
bility, the shift still manages to get propagated through the entire matrix. The only
manner in which a shift can fail to be transmitted is when it is siall and the entries
in the leading portion of the matrix are large. Stewart observed this phenomenon for

the QR algorithm on symmetric tridiagonal matrices [84].

5.3.1 Premature Deflation

Parlett and Le showed that if forward instability occurs during an implicit QR step,
it is preceded by premature deflation. Before defining premature deflation, we review

some necessary details concerning an implicit QR step. An implicit QR step with a real
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shift is calculated by forming (U; - - - U,L_l)THUl -+« U, -1 where each U; is an orthog-
onal matrix. The orthogonal matrices most commonly used are plane, or Givens’, ro-
tations. The first rotation is constructed so that UL (H —7I)er = e; \/(al —7)2 4 B3

The similarity transformation UI HU, introduces a nonzero eutry, or bulge, in the

(3,1) entry. The remaining plane rotations chase the bulge successively down the
sub-diagonal.
Suppose that the following 3 x 3 sub-matrix of (Uy--- U:)THU, - - - U; arises:

columni column i+1 column i+2

oW 1 ; X X
row 1+1 €1 T X
row i+2 Jo) €2 Qiyo.

If both €; and e, are small and 7 is nearly equal to the shift 7 used, then premature
deflation has occurred. Watkins’ shows that the entries marked by an “x” and [} are
not relevant to the analysis. As an example, the sequence of intermediate matrices
computed during the QR step with Wilkinson’s shift that results n G(1) undergoes
premature deflation. Starting with the first Givens’ rotation designed to annihilate

the (2,1) entry, the sequence is

3 0 0 0
0 1 14 —1.4
vtqu, = , ) ,
1l 711071 7.0-1078 2 |
0 0 1 2
[ 3 0 0 0
71-107% 2 —7.1-1071 1
UUNTGUU, = ,
(W) GUI U 0 ~1.4 1 1.4
L0 1 0 2

and finally (U1U2U3)TGUl U,Us = G(1). Notice that for UIGU, the (2,1) entry is
zeroed out, the (3,2) entry is small and the shift emerges in the (2,2) position. This
is premature deflation. Parlett and Le’s analysis shows that premature deflation is
necessary for the implicitly shifted QR algorithm on symmetric tridiagonal matrices
to undergo forward instability. Watkins demonstrates that along with premature
deflation, certain sub-diagonal entries must undergo a significant reduction in size
after the QR step. This is evident in the above example since eXGer /el G(1)er =
0(103). It is shown that the only way that a sub-diagonal element becomes tiny is

through a cancelation error.
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5.4 Re-ordering the Real Schur Form of a Matrix

Suppose that the upper Hessenberg matrix H = H ;(ci)p computed during a cycle of an

IRA-iteration is reduced to upper quasi-triangular form by the QR algorithm:

QTHQ R,
Ry Ry

0 Ra

2

(5.4.1)

where () is the orthogonal matrix computed by the algorithm. Equation (5.4.1) is a
real Schur form for H of order k 4+ p where the sub-matrices Ry, and Ry, are of order
k and p, respectively. Assume that the spectrums of Ry; and Ryy are distinct. In
practice, the order in which the computed eigenvalues of H appear on the diagonal of
R depends upon the shifts applied. Two algorithms for re-ordering the real Schur form
of a matrix, an iterative and direct variant, were presented in § 3.4.4 of Chapter 3.

The iterative swapping algorithm is equivalent to the implicit re-starting tech-
nique used by the TRA-iteration since both depend upon an implicitly shifted QR step
applied to an unreduced upper Hessenberg matrix to interchange Ri and Ry;. The
direct swapping algorithm is equivalent to a deflation technique, locking, presented
in Chapter 6. An orthogonal matrix is constructed from a basis for the invariant
subspace corresponding to Ry;. When this is applied as a similarity transformation
the diagonal blocks of R are swapped. In exact arithmetic, both swapping variants
result in a matrix that is upper quasi-triangular with the blocks interchanged.

The following example demonstrates that the two variants may produce drastically
different output matrices when computed in floating point arithmetic. We compute
under the same conditions as in the last section. Let

T — 1 +10ep 1 '
0 1

An eigenvector corresponding to Ay = 11is | (_)_ . Denote by Z the plane rotation
€M
that transforms this eigenvector to a multiple of the first column of the identity matrix

in R%2%%, Let
U = 1 —56M
T 10ey 1 ’
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so that U is orthogonal to a small multiple of machine precision. The matrix U acts
as a possible arbitrary orthogonal transformation required by the iterative algorithm.
Let T' denote the matrix computed by performing one step of the QR-iteration to the
matrix UTTU with shift equal to A\; = 1 + 10epr. We remark that for matrices of
order two, the explicit and implicit formulations of the QR-iteration are equivalent.

The two computed matrices are:

1 —1
Z2T'r7z = o
P [ 1.400000000000003 —7.999999999999996 - 107!
~ | 2.000000000000002 - 10~ 6.000000000000001 - 101 |

The computed eigenvalues of T are
1.000000033320011 and  9.999999666799921 - 107",

which both lost eight digits of accuracy. If another QR-step is performed on the ma-
1.000000000000003  1.000000000000001

~1.09-1071° 1
Note that the off-diagonal element is slightly larger than machine precision so that a

trix T' with the same shift, is computed.

standard QR algorithm does not set it to zero. But even if the off-diagonal element
is set to zero, the iterative swapping algorithm fails to interchange the eigenvalues.
Continuing to apply QR-steps with the shift equal to A; does not result in a properly
interchanged matrix.

The explanation why the iterative algorithm fails to work is sinple enough. The
matrix T constructed is poorly conditioned with respect to the eigenvalue problem

since the eigenvectors are nearly aligned. The eigenvalues of U TTU are
1.000000033320011 and  9.999999666799921 - 107,

Thus the small relative errors on the order of machine precision that occur when
computing UTTU produce a nearby matrix in which both the eigenvalues differ by
eight digits of accuracy. Performing a shifted QR step with A incurs forward insta-
bility since the last components of the eigenvectors for U TTU are on the order of
Véu. This is the necessary and sufficient condition of Parlett and Le [63]. Another
QR step with the same shift on T almost zeros out the sub-diagonal element since the

last components of the eigenvectors for T are order 107! and the shift is almost the
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average of the eigenvalues of T and quite close to both. We emphasize that the loss
of accuracy of the computed eigenvalues is one of the deleterious effects of forward
instability.

Bai and Demmel [9] present an example which compares their direct swapping

approach with Stewart’s algorithm EXCHNG. The matrix considered is

7.001 —-87 39.4r 22.27
) 7.001 —-12.27 36.07
0 0 7.01  —11.7567
0 0 37 7.01

A(r) =

When 7 = 10, ten iterations QR-iterations are required to interchange the two blocks.
As before, the eigenvalues undergo a loss of accuracy. The iterative swapping algo-
rithm fails for the matrix A(100). No explanation is given for the failure of Stewart’s
algorithm. The explanation for the failure is the same as for the previous example.
Using a direct algorithm, the eigenvalues of A(10) and A(100) are correctly swapped
and the eigenvalues lose only a tiny amount of accuracy.

Bai and Demmel presents a rigorous analysis of their direct swapping algorithm.
Although backward stability is not guaranteed, it appears that only when both Ty,
and T, are both of order two and have almost indistinguishable eigenvalues [15] is
stability lost. In this case, the interchange is not performed. Bojanczyk and Van
Dooren [15] present an alternate swapping algorithm that appears to be backward
stable.

5.5 Implications for an IRA-Iteration

A robust implementation of an IRA-iteration relies upon the proper transmission of
shifts during the implicit application shift application. The discussion that followed
Algorithm 4.2 used the convergence theory for the QR-iteration developed in § 3.2 to
conclude that all the sub-diagonal elements of [ éjﬂ), not including those correspond-
ing to complex conjugate pairs, go to zero if the polynomial min-max problem (3.2.1)
of Chapter 3 is approximately solved. In particular, if an exact shift strategy is used
for Algorithm 4.2 in Chapter 4, Theorem 4.4 implies that the sub-diagonal entry
,B,Ej 1) is zeroed out during the j-th iteration. However, as the examples in § 5.3- 5.4
demonstrate, ,(cj ) may not even be small, let alone negligible.

The theory reviewed and developed in the first three chapters of this thesis present

an analysis of what occurs in exact arithmetic. Computing in finite precision arith-
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metic, however, complicates the situation. The phenomenon of the forward instability
of the QR algorithm examined in the last two sections could have a possibly detri-
mental effect upon the accuracy in the computed eigenvalues. Since the IRA-1teration
is a truncation of the implicitly shifted QR algorithm, it also 1s susceptible to loss
of accuracy through forward instability. This indicates that it may be impossible
to filter out unwanted Ritz values with the implicit re-starting technique in practi-
cal computations. This is the motivation for developing the deflation techniques of
Chapter 7. In particular, using a converged Ritz value as a shift may incur forward
instability. Since the norm of f,gj 1) is the sub-diagonal entry ﬁ,(j:;l), forward insta-
bility may prevent the residual vectors of the successive Arnoldi factorizations from
ever approaching zero.

For example, consider the following thought experiment. Suppose that the exact
shift strategy is used for Algorithm 4.2 and p > 1 shifts are to be applied. According to
Theorem 4.4, the computed k-th sub-diagonal entry Bk+1 should be zero. Computing
in floating point arithmetic, though, gives that all we may expect is that the computed
k-th sub-diagonal entry Bk.{.] be on the order of ey relative to the norm of the matrix.
However, the forward instability of the QR algorithm may prevent the computed k-th
sub-diagonal entry [}kﬂ from becoming small. Application of the first shift possibly
introduces perturbations so that the remaining shifts are no longer eigenvalues of the
updated matrix. Thus, further QR steps may not lead to a negligible [;’k_,,l after p
implicit shifts. The examples of the previous section illustrate this behavior. The
possible ill conditioning of the nonsymmetric eigenvalue problem also exacerbates the
situation since inaccurate eigenvalues may result from the computed errors in the
matrix elements due to forward instability. An obvious, but expensive solution, is to

recompute the eigenvalues of the deflated matrix after every implicit shift application.

5.6 The Sensitivity of the Hessenberg Decomposition

Theorem 2.5 of Chapter 2 determines conditions for a length & truncated Arnold
factorization. The following geometric result indicates the dependence of the residual
vector upon the starting one used during the Hessenberg decomposition. Simply
stated, if the starting vector for an Arnoldi factorization, or any other orthogonal
reduction to Hessenberg form, is nearly in an invariant subspace for A of dimension
m, the residual vector associated with the length m Arnoldi factorization may not be

small as exact arithmetic leads us to expect.
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Theorem 5.3 Let A € R**". Suppose that AQ,, = QT is a real
partial Schur factorization of order m, and that AV,, = V,, H,, is a length
m Arnoldi factorization where H,, is unreduced, and that v; = Vj,e1 =
Qny, and let K, (A,v1)e, = Ao W 700 = v1 +w is an unit vector
with QT w = 0 such that AV, = V.H,; + f']-ef is the corresponding Arnoldi

factorization with Vje; = 70y, and

[ £ (A, w)|| - | A™w]]
[ E o (A, )| [[A™ 0|

¢ = max{ L,

then
(5.6.1)  puBusr < {14 262(Ku(A, 1)) HIA 01 |le + O(e?),
where /’;m = /[;'2 e Bm-

Proof Suppose that AV, = V;H; + fie; is an Arnoldi factorization with v, =
Viner = Quy where AQ,, = Q,, T, is a real partial Schur factorization of order m.
Let 79; = v; + w be an unit vector such that QT w =0, and Af/j = ‘711:_[, + f'je? 18
the corresponding Arnoldi factorization with Vje; = 70;.
Using Ruhe’s characterization of the Hessenberg decomposition in equation (2.4.3)
of Chapter 2 it follows that
||Ajv1 — K;(A,vm)¢;|| = min ||Ajvl — K;(A,v)cl|,

CER-7
lI73ll,

= min ||A7td; — K;(A, 1),

NAT D — K;(A, T1)¢

ceRI
= ’I/:J' .
But,
(5.6.2) I#l = (|47 (01 4 w) = {K;(A, 01) + KG(A, w0)}é -

Standard results [35, page 228] on the sensitivity of the least squares problem give

< ||A-j'()1||{1 + 2k (Kj(A, 1)) e+ O(é*).

[l = 7

In particular, when j = m it follows that r,, = 0. Theorem 2.3 implies that
the QR factorizations of K,,(A,v;) and K, (A, 70;) are V,, R,, and ‘A/,,,,ﬁ’,m, respec-

tively, where both R,, and R,, are nonsingular upper triangular matrices of order m.
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Equation (2.4.4) gi
of Theorem 2.3 computeb the equality e; Rmel = ﬂ; [i for 1 = 2,. O

” — pm” fm” - /)m/[)’m+17 \’Vh?lf‘ pm - (' Rmem Th(:' PIOOf

The sensitivity of the product of the sub-diagonal elements of the perturbed
Arnoldi factorization depends linearly on x3(K,.(A,v1)). Since ko(Kj-1(A,v1)) <
k2(K;(A,v1)), the theorem argues against building large factorizations. Also note
that [|A" | = | 4™ Quuyll = T2

Suppose the solution to the perturbed least squares problem is ¢ = ¢; + dc;.

When j = m, equation (5.6.2) of the proof leads to

,82 T '/Bm+1 -

w — K, (A, v1)8¢, + Ko (A, w)em|s

where second-order terms are ignored. It is this combination of vectors that is re-
sponsible for the possible amplification of the perturbation.

There is an interesting connection between Arnoldi factorizations and moment
matrices that gives a lower bound on the product p,, = fa- - B Nachtigal [55,
page 36] discusses a similar connection between moment matrices and the nonsym-
metric Lanczos process. Since I, is of full column rank, KZ:K,,L is a positive definite

symmetric matrix. By Theorem 2.3 of Chapter 2,

Im =V, T‘/m - HTI{TI('HLRWH

m m

where K,, = K,,(A,v1) results in

RTR} = KTK, =M,.

T

Defining L,, = Rm , the Cholesky factorization M,, = L, LT is determined by the
inverse of the Fourier coefficient matrix R,,. Since the i-th sub-diagonal element of
H,, is B; for i = 2,...,m define f; = 1(= |jv1]|). Thus, the reciprocal of the product
B - - - Bi is the i-th pivot used during the Cholesky factorization of the moment matrix
M,,. A standard result [35, page 145] on the numerical stability of the Cholesky

factorization implies that

<€ TM,.e; = \ﬂ) NTAG- Dy

and hence, (vir(A(j‘l))TA(j‘l)vl)’1/2 < fy--- By Note that €$L+1Rm+1€m+1 =0
since A™wv; is a linear combination of the columns of K,,(A,v;). Hence the Cholesky
factorization of K41 is not defined since the diagonal element el r1lmt1€ms does

not exist.
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Let KT +1f(m+1 = }?7_”:11 A,:,Llﬂ be the Cholesky factorization of the perturbed
Krylov matrix K,.41(A,701) using the notation of Theorem 5.. Since 6?13’,,_”14_161-
is just the reciprocal of e?RmHei for i = 1,...,m + 1, the implication is that if
(10,)T A?™ 70, is not large then ﬁAz e ﬂAmH is not small. Since 70; = v; + w, it fol-
lows that (79;)T A*™r9; will be not be large when the €£+1R;Ll+1 €m41 18 not small—
precisely the situation that indicates that forward instability occurred during the
orthogonal reduction of A to upper Hessenberg form.

Finally, we remark that the sensitivity of a Hessenberg decomposition via or-
thogonal matrices can help explain the perplexing numerical behavior of the Arnoldi
iteration for computing eigenvalues. Suppose that AV,, = Voo Hpn + fme7Tn is an Arnoldi
factorization of length m. It is often observed that although k Ritz estimates of the
factorization may be suitably small, the residual vector f,, may not be—even for
values of m slightly larger than or equal to k. Since a step of a shifted QR-iteration is
equivalent to replacing the starting vector, the potential forward instability of the QR
algorithm examined in this chapter may also be explained by Theorem 5.3. Extreme
sensitivity of some of the matrix elements to the shift during a QR step is equivalent

to a starting vector having a small perturbation in an unwanted direction.
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Chapter 6

Deflation Techniques within an IRA-iteration

The connection between the IRA and QR-iterations motivates us to take advantage
of the well understood deflation rules of the QR algorithm and adapt them to the
former iteration. These deflation techniques are extremely important with respect
to convergence and numerical properties. Deflation rules have contributed greatly to
the emergence of the practical QR algorithm as the method of choice for computing
the eigen-system of dense matrices. This chapter introduces deflation schemes that
may be used within an TRA-iteration. The iteration is designed to compute a selected
subset of the spectrum of A such as the k eigenvalues of largest real part. We refer to
this selected subset as wanted and the remainder of the spectrum as unwanted. As
the iteration progresses, some of the Ritz value approximations to eigenvalues of A
may converge long before the entire set of wanted eigenvalues have. These converged
Ritz values may be part of the wanted or the unwanted portion of the spectrum. In
either case it is desirable to deflate the converged Ritz values and corresponding Ritz
vectors from the unconverged portion of the factorization. If the converged Ritz value
is wanted then it is necessary to keep it in the subsequent Arnoldi factorizations. This
is called locking. If the converged Ritz value is unwanted then it must also be removed
from the current and subsequent Arnoldi factorizations. This is called purging. These
notions will be made precise during the course of the chapter. For the moment we

note that the advantages of a numerically stable deflation strategy include:

e Reduction of the working size of the desired invariant subspace.

e The ability to determine clusters of nearby eigenvalues without need for a block
Arnoldi/Lanczos method [39, 79, 80].

e Preventing the effects of the forward instability of the Arnoldi/Lanczos algo-

rithm discussed in Chapter 5.

Deflating within the IRA-iteration is examined in § 6.1. The deflation scheme

for converged Ritz values is presented in § 6.2. The practical issues associated with
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our deflation scheme are examined in § 6.3. These include block generalizations of
the ideas examined in § 6.2 for dealing with clusters of Ritz values, avoiding the use
of complex arithmetic when a complex conjugate pair of Ritz values converges and
an error analysis. A brief survey of other deflation strategies is given in § 6.5. An
interesting connection with the various algorithms used to re-order a Schur form of

matrix is presented in § 5.4. Numerical results are presented in § 6.6.

6.1 Deflation within an IRA-iteration

As the iteration progresses the Ritz estimates (2.5.1) decrease at different rates. When
a Ritz estimate is small enough, the corresponding Ritz value is said to have con-
verged. The converged Ritz value may be wanted or unwanted. In either case, a
mechanism to deflate the converged Ritz value from the current factorization is de-
sired. Depending on whether the converged Ritz value is wanted or not, it is useful
to define two types of deflation. Before we do this, it will prove helpful to illustrate
how deflation is achieved. Suppose that after m steps of the Arnoldi algorithm we

have

H M

eele? H,

(6.1.1) Al v] = [n %] + fem,

where V; € R", H; € R for 1 < j < m. If € is suitably small then the factor-
ization decouples in the sense that a Ritz pair (s,0) for Hy provides an approximate
eigen pair (# = V;s,8) with a Ritz estimate of [eels|. Setting € to zero splits a nearby
problem exactly and setting e = 0 is called deflation. If € is suitably small then all

the eigenvalues of H; may be regarded as converged Ritz values.

6.1.1 Locking

If deflation has taken place and all of the deflated Ritz values are wanted, they are
considered locked. This means that subsequent implicit restarting is done on the basis
V,. The sub-matrices effected during implicit restarting are M, H, and V,. However,
during the phase of the iteration that extends the Arnoldi factorization from k to k+p
steps, all of the columns of { i Vi ] participate—just as if no deflation had occurred.
This assures that all of the new Arnoldi basis vectors are orthogonalized against
converged Ritz vectors and prevents the introduction of spurious eigenvalues into the

subsequent iteration. Moreover, this provides a means to safely compute multiple
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eigenvalues when they are present. A block method is not required if deflation and
locking are used. The concept of locking was introduced by Jennings and Stewart [92]

as a deflation technique for simultaneous iteration.

6.1.2 Purging

If deflation has occurred but some of the deflated Ritz values are unwanted, a further
mechanism, purging, must be introduced to remove the unwanted Ritz values and
corresponding vectors from the factorization. In exact arithmetic this would not be
necessary because the implicit shift technique would accomplish the removal of the
unwanted Ritz pair from the leading portion of the iteration. However, computing
with finite precision arithmetic may make it impossible to accomplish the removal
because of the forward instability [63, 99] of the QR algorithm discussed in Chapter 5.
The basic idea of purging is perhaps best explained with the case of a single deflated
Ritz value.

Let j =1 in (6.1.1) and equate the first columns of both sides to obtain
(6.1.2) Avy = viog + Ve,

where v; = Vie; and Hy = a;. Equation (6.1.2) is an Arnoldi factorization of length
one. The Ritz value a; has Ritz estimate |e|.

Equating the last m — 1 columus of (6.1.1) results in
(6.1.3) AV, = VM +VyH, + fel |,

Suppose that o represents an unwanted Ritz value. If A were symmetric then M =

cel and equation (6.1.3) becomes
(A+E)WV, = ViHs+ feg,_y,

where E = —evy(Vaer)T — ¢(Vaey)oI. A simple derivation shows that ||E|| = € and
hence equation (6.1.3) defines a length m — 1 Arnoldi factorization for a nearby
problem. The unwanted Ritz pair (vy,a;) may be purged from the factorization
simply by taking V = V, and H = H, and setting M = 0 in (6.1.3). If A is not
symmetric, the 1 x (m — 1) matrix M couples vy to the rest of the basis vectors Vj.
This vector may be decoupled using the standard Sylvester equation approach [9, 35].
Purging then takes place as in the symmetric case. However, the new set of basis
vectors must be re-orthogonalized in order to return to an Arnoldi factorization. This

procedure is developed in § 6.2 and § 6.3 including the case of purging several vectors.



6.1.3 Complications

An immediate question is: Do any sub-diagonal elements in the Hessenberg matrix
of the factorization (6.1.1) become negligible as an IRA-iteration progresses ? Since a
cycle of the Arnoldi iteration involves performing a sequence of QR steps, the question
is answered by considering the behavior of the QR-iteration upon upper Hessenberg
matrices. In exact arithmetic under the assumption that the Hessenberg matrix
is unreduced, only the last sub-diagonal element may become zero when shifting,.
But the other sub-diagonal elements may become arbitrarily small. In addition, as
discussed in Chapter 5, the forward instability of an IRA-iteration possibly renders

the sub-diagonal entries of H meaningless.

6.2 Deflating Converged Ritz Values

During an Arnoldi iteration, Ritz values may converge with no small sub-diagonal el-
ements appearing on the sub-diagonal of Hy. However, when a Ritz value converges,
it is always possible to make an orthogonal change of basis in which the appropriate
sub-diagonal of Hj is zero. The following result indicates how to exploit the con-
vergence information available in the last row of the eigenvector matrix for Hy. For
notational convenience, all subscripts are dropped on the Arnoldi matrices, V, H and

f, for the remainder of this section.

Lemma 6.1 Let Hs = sf where H € R¥** is an unreduced upper
Hessenberg matrix and § € R with ||s|| = 1 . Let W be a Householder
matrix such that Ws = e;{ where { = £1. Then

(6.2.1) W = ef +u”,
where ||w|| < V2|eTs| and
(6.2.2) WITHWe, = ef.

Proof The required Householder matrix has the form W = I — (s — Cer)(s—Cer)T,

where v = (1 + |eTs])~!. A direct computation reveals that

(6.2.3) W = ef +ul,
where wT = vef s(Cel — sT). Estimating
‘ﬂrsl IC’TSI /-
[|wll = H"TC{—SHS — (el = l—ﬁq—l 2(1 + |eTs]) < V2|efs],
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establishes the bound on ||w||. The final assertion (6.2.2) follows from
WTHWe, = CC'WTHs = (TWOWTs = (THOWs = fe;.

a
# 0 by Lemma 2.1.
Lemma 6.1 indicates that the last row and column of W differ from the last row
. The Ritz estimate (2.5.1) will indicate
when the corresponding Ritz value § may be deflated.
Rewriting (2.2.1) as

The hypothesis that H is unreduced assures that |e]s

and column of I, by terms of order |e£s

AVW = VWWTHW + felw,
and using both (6.2.1) and (6.2.2) and partitioning we obtain

6 KT

(6.2.4) AVW = VW + fef + fuT.

Equation (6.2.4) is not an Arnoldi factorization. The matrix H of order k—1 needs to
be returned to upper Hessenberg form. Care must be taken not to disturb the matrix
fel and the first column of WTHW. To start the process we compute a Householder

matrix W) such that
. M g
wigw, = | .. 71,
Brei_y 7

with e_,W; = e}_,. The above idea is repeated resulting in Householder matrices

Wi, W, ..., Wi_s that returns H to upper Hessenberg form. Defining

- 1
W = 0 ,
0 WiW,- - Wi_s
it follows by the construction of the W; that e} W = e and
(6.2.5) WIWTHWWe, = 6ey.

The process of computing a similarity transformation as in equation (6.2.5) is not
new. Wilkinson discusses the more general notion of deflating with invariant sub-

spaces in § 20-25, Chapter 9 in [101]. Wilkinson also references the work of Feller
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and Forsythe [31] who appear to be the first to use elementary Householder trans-
formations for deflation. Problem 7.4.8 of [35] addresses the case when working with
upper Hessenberg matrices. What appears to be new is the application to the Arnoldi

factorization for converged Ritz values.
Since ||fwTW|| = |IfINWTw| = |If]l llwl]], the size of ||fw”|| remains the un-
changed. Making the updates

Ve—VWW, H—WITWTHWW, w?l —wtW
we obtain the relation
(6.2.6) AV = VH+ fel + fu'.

A deflated Arnoldi factorization is obtained from (6.2.6 ) by discarding the term fw?.
The following theorem shows that the deflated Arnoldi factorization resulting from

this scheme is an exact length k factorization for a nearby matrix.

Theorem 6.1 Let an Arnoldi factorization of length k be given by
(6.2.6) where Hs = s0 and v2|els| || f|l < €||A|| for € > 0. Then there

exists a matrix £ € R"*" such that
(6.2.7) (A+ E)YW = VH+ fe{,
where ||E|| < ¢||All.

Proof Subtract fw? from both sides of equation (6.2.6). Set E = — f(Vw)T and
then

EV = —f(Vw)TV = — fuwT,

and equation (6.2.7) follows. Using Lemma 6.1 it follows that ||E| = || f|| |}w|| =
V2lel sl fII < el Al o
If A is symmetric then the choice E = — f(Vw)T — (Vw) fT results in a symmetric

perturbation. If ¢ is on the order of unit roundoff then the deflation scheme introduces
a perturbation of the same order to those already present from computing the Arnoldi
factorization in floating point arithmetic.

Once a converged Ritz value 6 is deflated, the Arnoldi vector corresponding to

0 is locked or purged as described in the previous section. The only difficulty that
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remains is decoupling the Ritz vector corresponding to the Ritz value 0, or purging,
from the trailing factorization when A is nonsymmetric.

If A is not symmetric then the Ritz pair may not purged immediately because of
the presence of h. A standard reduction of H to block diagonal form is used. If 8 is

not an eigenvalue of H, then we may construct a vector z € R*-! so that

[P L)L 2N

Solving the linear system

(6.2.9) (AT —014_1)z = h,

ZElZT.
Iy

Post multiplication of equation (6.2.6) by Z results in

determines z. Define

AVZ = VZ | + fef + fuT 2,
since eI Z = e}. Equating the last k — 1 columns of the previous expression results in
T T T
(6.210)  AV| © S A I S S B
Iy k-1 Ixq

Compute the factorization (using k — 1 Givens rotations)

ZT
(6.2.11) QR = [IH }

where Q € RF**1 with QTQ = I4—; and R is an upper triangular matrix of order
k — 1. Since the last &k — 1 columns of Z are linearly independent, R is nonsingular.

Post multiplying equation (6.2.10) by R™" gives
(6.2.12) AVQ = VQRHR™+ pit, fel | + fu'Q,

where py_; = e}_, Re_1. The last term fwT@Q in (6.2.12) is discarded by the deflation

scheme and this relation shows that the discarded term is not magnified in norm by
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the purging procedure. The matrix RH R~! remains upper Hessenberg since R is

upper triangular. Partitioning () conformably with the right side of equation (6.2.11)

W | p 2T
(P Ty ,

and it follows that B! = (4. Using the Cauchy-Schwarz inequality it follows that

results in

loel,] = leF_,Quer—1] < 1 and hence the Arnoldi residnal is not amplified by the

purging. The final purged Arnoldi factorization is
(6.2.13) AVQ = VQRHQu +pit fei_,.

The similarity transformation that produces the new upper Hessenberg matrix
does not affect the eigenvectors and thus the Ritz estimates. Since the Ritz estimates
are just the residuals of the Ritz pairs which are determined by A and the R(V), the
similarity transformation performed on H through R does not affect the Ritz pairs.
Only the basis representation of the R(V') is modified so that we may decouple and
discard an unwanted Ritz pair.

Performing the set of updates
Ve VCI?? H — RﬁQ?la f — /’Ijilfv

defines equation (6.2.13) as an Arnoldi factorization of length k¥ — 1. Theorem 6.1
implies this is an Arnoldi factorization for a nearby matrix. It is easily verified that

VT f(el_, + wT) = 0 and that H is an upper Hessenberg matrix of order k — 1.

6.3 A Practical Deflating Procedure

The practical issues associated with a numerically stable deflating procedure are ad-

dressed in this section. These include:
1. Performing the deflation in real arithmetic when a converged Ritz value
has a non-zero imaginary component.
2. Deflation with more than one converged Ritz value.

3. Error Analysis.

Section 6.3.2 presents two algorithms that implement the deflation schemes. The

error analysis of the two deflation schemes is presented in the next section.
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6.3.1 Deflation with Real Arithmetic

Suppose s =t +4u and 6 = v+ iy is an eigenpair of H where t and « are unit vectors

in R*, H € RF*F and p # 0. Thus

H[tu]:[tu]li_: /:}E[fu]c.
Factor
(6.3.1) [t u] = Q[R},

where QTQ = I and R is an upper triangular matrix. It is easily shown that ¢ and
u are linearly independent as vectors in R* since i # 0 and the non-singularity of R

follows. Performing a similarity transformation with ¢ on [ t u ] gives

QTHQ [ €1 €y ] = 0

RCE™! ]

Suppose that H corresponds to an Arnoldi factorization of length k and that |eft| =
O(¢) = |efu|. In order to deflate the complex conjugate pair of eigenvalues from the
factorization in an implicit inanner, we require that ef Q@ = ef +¢7 where ||| = O(e).

We now show that the magnitudes of the last components of ¢ and u are not
sufficient to guarantee the required form for (). Suppose that u = tcos ¢+ rsing

where r is a unit vector orthogonal to ¢ and ¢ measures the positive angle between ¢

G ¢
0 a |’

where (; = £1 and the last column and row of W; and Ij are order eft equiva-

and u. Lemma 6.1 allows a Householder W, matrix such that

wi [t u ] = [ Clel,Clelcos¢+WlTv'si11¢]

lent. To compute the required orthogonal factorization in equation (6.3.1) another

1 0 -
Householder matrix W, = 0 Wl is needed so that WIa = =||alle;. But
2
Lemma 6.1 only results in e¢f_, Wy = el_; + @ with ||@,]| = O(e) if el i is small
relative to ||z||. Unfortunately, if ¢ is small, Wi v = (ie; and ||@| = ¢ ~ 0. Hence we
cannot obtain the required form for @ = W, W,.
Fortunately, when ¢ and u are nearly aligned, 4 may be neglected as the following

result demonstrates.
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Lemma 6.2 Let H(t +iu) = (v + ip)(t + iu) where t and u are unit
vectors in R*, H € R*** and u # 0. Suppose that ¢ measures the positive

angle between t and u. Then
(6.3.2) ln] < sing|H].

Proof Let u = tcos¢ + rsin¢ where r is a unit vector orthogonal to ¢ and ¢
measures the positive angle between ¢ and w. Equating real and imaginary parts of
H(t +iu) = (v + ip)(t + iu) results in Ht = tv —up and Hu = tp 4 uv. The desired

estimate follows since
2 = tTHu — uTHt = (T Hr — r" Ht)sin §,

results in |g| < sin ¢||H]|. O
For small ¢, ¢t and « are almost parallel eigenvectors of H corresponding to a
nearly multiple eigenvalue. Numerically, we set u to zero and deflate one copy of v
from the Arnoldi factorization.
A computable bound on the size of the angle ¢ 1s now determined using only
the real and imaginary parts of the eigenvector. The second Householder matrix W,

should not be computed it
(6.3.3) leT_a| > |allleful

Recall that Lemma 6.1 gives eIW; = e} + w! where w] = velt(¢eT — t7) and
v = (1+|eft))~t. Thus

el a= c’{WTu = el Wu = c{u + wlu,
where the symmetry of W is used. The estimate

|| = |0, a717|| = ||Wir

sin ¢ = sin @,

follows since Wy is orthonormal and = is a unit vector. Rewriting equation (6.3.3),

we obtain
6{“ + wlu
etu
T
Lo whu
= L+,
T
CLu

sing < |

Ty
(6.3.4) = |1+ 'y(Clefu - yTu)f% ,
efu
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as our computable bound.

Suppose that HX = XD where X € R**7 and D 1s a quasi-diagonal matrix. The
eigenvalues of H are on the diagonal of D if they have zero imaginary component
and in blocks of two for the complex conjugate pairs. The columns of X span the
eigenspace corresponding to diagonal values of D. For the blocks of order two on the
diagonal the corresponding complex eigenvector is stored in two consecutive columns
of X, the first holding the real part, and the second the imaginary part. If we want to

block deflate X, where the last row is small, from H, then we could proceed as follows.
Compute the orthogonal factorization X = ) 01 } via Householder reflectors where

QTQ = I, and R € R*¥* is upper triangular. Then the last row and column of Q
differ from that of I, with terms on the same order of the entries in the last row of X if
the condition number of R is modest. Theorem 6.4 makes this last statement precise.
Thus if the columns of X are not almost linearly dependent, an appropriate () may
be determined. Finally, we note that when H is a symmetric tridiagonal matrix, an

appropriate () may always be determined.

6.3.2 Algorithms for Deflating Converged Ritz Values

The two procedures presented in this section extend the ideas of § 6.1 to provide
deflation of more than one converged Ritz value at a time. The first purges the
factorization of the unwanted converged Ritz values. The second locks the Arnoldi
vectors corresponding to the desired converged Ritz values. When both deflation al-
gorithms are incorporated within an IRA-iteration, the locked vectors form a basis for
an approximate invariant subspace of A. This truncated factorization is an approx-
imate partial Schur decomposition. When A is symmetric, the approximate Schur
vectors are Ritz vectors and the upper quasi-triangular matrix is the diagonal matrix
of Ritz values.

Partition a length m Arnoldi factorization as

H; M;
0 Hm—j

(635) A[ ‘/J ‘_/’Ilb—j ] = [ ‘/7 ‘/m——j ] [ } + fme'lj:b + f“)Ta

where H; and H,,_; are upper quasi-triangular and unreduced upper Hessenberg
matrices, respectively. The matrix H; € R/*/ contains the wanted converged Ritz
values of the matrix H,,. The columns of V; € R™J are the locked Arnoldi vectors

that represent an approximate Schur basis for the invariant subspace of interest. The
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matrix H,,_; designates the trailing sub-matrix of order m — j. Analogously, the last
m — 7 columns of V,, are denoted by Vin-i. We shall refer to the last m — j columns
of (6.3.5) as the active part of the factorization. Finally, M; € R7X™=7 denotes the
sub-matrix in the north—east corner of H,,. Figure 6.1 illustrates the matrix product
V.. H,, of equation (6.3.5).

If A is symmetric the two deflation procedures simplify considerably. In fact,
purging is only used when A is nonsymmetric for otherwise M; = 0;x,,—; and both
H; and H,,_; are symmetric tridiagonal matrices. Both algorithms are followed by

remarks concerning some of the specific details.

Algorithm 6.2
function [‘/ma Hm;fm] = Lock (‘/mv Hm;.ﬁn;Xiaj)

INPUT: A length m Arnoldi factorization AV,, = V,.H,, + fueX. The
first § columns of V,, represent an approximate invariant subspace for
A. The leading principal sub-matrix H; of order j of H,, is upper quasi-
triangular and contains the converged Ritz values of interest. The columns
of X; € R™77% are the eigenvectors corresponding to the eigenvalues that

are to be locked.

OUTPUT: A length m Arnoldi factorization defined by V.., H,, and f,,
where the first 5 +4 columns of V,,, are an approximate invariant subspace

for A.
1. Compute the orthogonal factorization

R;

G = Xi7
2 Om—j—i

where ) € R4 ysing Householder matrices ;
2. Update the factorization
Hm—j — CQTI_{m—jQ 3 ‘_/m-—j — ‘_/m—jQ y Mj o Mjcp) s

3. Compute an orthogonal matrix P € R™~9=""=J=% ysing Householder

matrices that restores Hm_j_i to upper Hessenberg form ;
4. Update the factorization
E’m—j—i — PT-H7n-—j—iP 3 ‘_/m.——j——i — ‘Zn—j—ip ) Mj+i — Mj+iP )



Locked Vectors

D Active Factorization

Figure 6.1 The matrix product V,, H,, of the factorization upon entering
Algorithm 6.2 or 6.3. The shaded region corresponds to the converged
portion of the factorization.
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Line | computes an orthogonal basis for the eigenvectors of H,,_; that correspond
to the Ritz estimates that are converged. The matrix of eigenvectors in line 1 satisfies
the equation ITL,L_J-X,- = X;D; where D; is a quasi-diagonal matrix containing the
eigenvalues to be locked. From the § 6.3.1, we see that the leading sub-matrix of
QT H,._;Q of order i is upper quasi-triangular. The required relation el Q= el +4¢7,
with ||¢|| small is guaranteed if the condition number of R; is modest. Since ¢ is
typically a small number, we compute the condition number of R;. The number of
vectors to be locked is assumed to be such that the condition number of R; is small.
In particular, if H,, is a symmetric tridiagonal matrix, () always has the required
form. Lines 3-4 return the updated H,,_; to upper Hessenberg form.

Before entering Purge, the unwanted converged Ritz pairs are placed at the front
of the factorization. A prior call to Lock places the unwanted values and vectors
to the beginning of the factorization. Unlike Lock, the procedure Purge requires
accessing and updating the entire factorization in the nonsymmetric case. Thus, for
large scale nonsymmetric eigenvalue computations, the amount purging performed

should be kept to a minimum.

Algorithm 6.3
function [‘/m—i) H’/n—i) fm—i] = Purge (‘/m, Hma fma j, IL)

INPUT: A length m Arnoldi factorization AV,, = V,, H,, + f}ne%. The
first 7 4+ j columns of V,, represent an approximate invariant subspace for
A. The leading principal sub-matrix H;;; of order ¢ 4+ j of H,, is upper
quasi-triangular and contains the converged Ritz values. The ¢ unwanted
converged eigenvalues are in the leading portion of H;y;. The converged
complex conjugate Ritz pairs are stored in 2 x 2 blocks on the diagonal
of Hiy;.

OUTPUT: A length m — ¢ Arnoldi factorization defined by Vi, —i, Hy—i
and f,,_; purged of the unwanted converged Ritz values and corresponding

Schur vectors.

Lines 1-3 purge the factorization of the unwanted converged Ritz

values contained in the leading portion of H,, ;

1. Solve the Sylvester set of equations,

ZH,_i— H,Z = M,
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. Vectors to be Purged

Locked Vectors

D Active Factorization

Figure 6.2 The matrix product V,, H,, of the factorization just prior to
discarding in Algorithm 6.3. The darkly shaded regions may now be dropped
from the factorization.
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for Z € R™*™~ that arise from block diagonalizing H,, ;

-H'm Ii Z _ L‘ Z H,' ) ,
Im—i Im—i Hm—i

2. Compute the orthogonal factorization

—Qi Rm—i =
Qm-i

where () € R™*™~* using Householder matrices ;

VA

Rm—i =
Q Im—i

Y

3. Update the factorization and obtain a length m — ¢ factorization ;
Hm—-i — Rm-il_{nr—ic?m—i ) ‘/m—i — ‘/mQ 3 fm—'i — /);Ll_imt_ifm )

. — T o .
where Pm—im—i = € Rm—z Cm—i

‘1 —1

At the completion of Algorithm 6.3 the factorization is of length m — ¢ and the
leading sub-matrix of order j will be upper quasi-triangular. The wanted converged
Ritz values will either be on the diagonal if real or in blocks of two for the complex
conjugate pairs. Figure 6.2 shows the structure of the updated V,,H,, just prior to
discarding the unwanted portions.

The solution of the Sylvester equation at line 1 determines the matrix Z that
block diagonalizes the spectrum of H,, into two sub-matrices. The unwanted portion
is in the leading corner and the remaining eigenvalues of H,, are in the other block.
A solution Z exists when the H; and H,,_; do not have a common eigenvalue. If there
is an eigenvalue is shared by H; and Hm_i, then H,, has an eigenvalue of multiplicity
greater than one. The remedy is a criterion that determines whether to increase or
decrease ¢, the number of Ritz values that require purging. Analysis similar to that
in section 6.2 demonstrates that after line 3 the Ritz estimates for the eigenvalues

of H,,_; are not altered. We also remark that R,,_; is nonsingular since the matrix

is of full column rank and that |p;} | <L

m—1i,mn—1
m—1

6.4 Error Analysis

This section examines the numerical stability of the two deflation algorithms when

computing in finite precision arithmetic. A stable algorithm computes the exact
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solution of a nearby problem. It will be shown that Algorithms 6.3 and 6.2 deflate
slightly perturbed matrices.

Hy, Hi,
Hyn  Hy
Lock and Purge of § 6.3.2. The sub-matrix Hy, is of order ¢ and Hs; is zero except for

For ease of notation H = replaces H,, € R™*" used by procedures

the sub-diagonal entry of H located in the north-east corner. Analogously, H repre-
sents H after the similarity transformation performed by Lock or Purge, partitioned

conformably.

6.4.1 Locking

The locking scheme is considered successful if the desired eigenvalues end up in Hi;
and Hy; is small in norm. The largest source of error is from computing an orthogonal
factorization from the approximate eigenvector matrix containing the vectors to be
locked.

The matrix pair (X, D) represents an approximate quasi-diagonal form for H. The
computed columns of X span the right eigenspace corresponding to diagonal blocks
of D. We assume that X is a non-singular matrix and that each column is a unit
vector.

Standard results give | XD — HX|| < €| H|| where ¢ is a small multiple of ma-
chine precision for a stable algorithm. Defining the matrix £ = (XD—HX)Y7 where
X1 =YT it follows that (H + E)X = XD. If 6;!(X) is the smallest singular value

m

of X then || X~ = 0,;,}(X). Since each column of X is a unit vector, || X] < /m.
If K(X) = || X|||I X~ is the condition number for the matrix of approximate eigen-
vectors, | E| < e&(X)||H]|. If X is a well conditioned matrix then the approximate
quasi-diagonal form for H is exact for a nearby matrix. In particular, if H is sym-
metric then E is always a small perturbation. As the columns of X become linearly
dependent, o,,(X) decreases and F may represent a large perturbation.

The following result informs us that locking is a conditionally stable process.

Theorem 6.4

Let H € R™*™ be an unreduced upper Hessenberg matrix with distinct
. D, 0
eigenvalues. Suppose that X = [ X1 X ] and D = 01 D are an
2
approximate quasi-diagonal form for H that satisfies (H + E)X = XD

where ||E|| < e16(X)||H|. Let Q1Ry = X3 € R™* where QTQ; = I;.
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Suppose the QR factorization of X; is computed so that (:)}Ai’ =X +E
where QT(Q) = I, and ||£|| < &]|X1]|. Both ¢ and €, are small multi-
ples of the machine precision €ps. Let € = max(e;,2¢;) and let «(R;) =

| R1|||| Y| be the condition number for Ry where
, = K(R1)
/ - 1 - EQK(Rl) ’

If n = e(k(X)+ep(l+eur(Ry))) < 1 then there exists a matrix C € R™*™
such that

I;[u I;[12
0 Hy ’

QIH-C)Q=H= [
where Hy; is an upper quasi-triangular matrix similar to Dy and

(6.4.1) IC1 < e(s(X) + w)IH| + O(€").

A few remarks are in order.

1. If H is symmetric f{12 = 0 and I:Iu is diagonal. Procedure Lock is stable
since noted previously, £(X) = 1 and p ~ 1. Parlett [61, pages 85-86] proves

Theorem 6.4 for symmetric matrices when locking one approximate eigenvector.

C

1s small relative to

2. If only one column is locked, then p = 1 + O(e) and

w(X)| HI|

3. If k(Ry) is large, the columns of X are nearly dependent. In this case, x(X) will
also be large and locking introduces no more error into the computation than
already present from computing the quasi-diagonal pair (X, D). The factor of

i may be minimized by decreasing j the number of columns locked.

4. A conservative strategy locks only one vector at a time. The only real concern
is when locking two vectors corresponding to a complex conjugate pair. If the
real and imaginary part of the complex eigenvector are nearly aligned, p will
be large and locking may be unstable. But as § 6.3.1 explains, the complex
conjugate pair may be numerically regarded as a double eigenvalue with zero

imaginary part. Only one copy is deflated and p =~ 1.
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Proof
" D, 0O . , :
Partition X = [ Xi Xo ] and D = o DI The 7 columns of X are a basis
2
for the right eigenspace to be locked and D; contains the corresponding eigenvalues.

We assume that the eigenvalues of Dy and D, are distinct and that X is non-singular.
4 \ , .

Let YT = YIT denote the inverse of X. The rows of Y7 span the left eigenspace

2

assoclated with X; and D;.

Let the product QR be an exact QR factorization of a matrix near X;:

A

oh= 0 @z]lﬁl}ﬂlw,

where || E|| < ]| X1]|. Using Theorem 1.1 of Stewart [89], since IBTHNE) <5 < 1
there exists matrices Wi € R™*7 and F; € R?*J such that (Q;+ W1 )(R1+Fy) = Q1R1

R
where QR = [Ql Q-z] l: !

0 | = Xy and (Q; + W1)T(Q1 + W,) = I;. Define
F

F =

and W = [ Wy 0 ] The matrices W and F' are the perturbations that

account for the backward error £ produced by computation.
Partitioning W conformably with @ gives
QTHQ = Q"XDY'Q - QTEQ,
= Q"X + XD, ¥)Q - QTEQ,
o7 ]

(6.4.2) - Cng CODYT +5GDYT) [ @ Qs ]+
2
WT(X: Dy YF + X, DY) [ Qr Qo ]+
Qf
| @2 ]
where the second-order terms involving W are ignored. From the decomposition
X1 = Q1R; it follows that @, = X;R;' which gives QTX; = 0. The equality
YT = X~ implies that ¥,7X; = I for I = 1,2 and Y7 X; = 0 = YT X, and hence

Y7 Q, = 0.
Using these relationships, equation (6.4.2) becomes

(6.4.3) oTHO — | DT QIXDYTQr |
0 QI X, DY Q, ’

(X1 DY + X, D Y)W — QTEQ,
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(6.4.4) = H+C,

where the matrix C' absorbs the three matrix products involving W or F on the right
hand side of equation (6.4.2). We note that if H is symmetric, QT X, = 0 = Y,TQ,, Ry
is a diagonal matrix and hence Ry DRy = D;. Thus H is also a symmetric matrix.
Defining ¢ = QCQT equation (6.4.4) is rewritten as QT(H — C)Q = H. Since
Qﬁ = (XiD,\ YT + X, D,Y)Q and using the definition of ¢ from equation (6.4.2),

(6.4.5) C = WIQH+Q™WH - QTEQ,

it follows that ||C|| < 2||WTQ||||H || + || E||- The result of Theorem 1.1 of Stewart [89)]

also allows the estimate
IWTQ| < Wl < eap(1 + expuk(Ry)),

where O(€?) terms are ignored. For modest values of u, W is numerically orthogonal

to (). From equation (6.4.5)

el = 16l
< 2eap(l + e R))IH] + cn(X)| H]l
< el + eapr(R))(IH] +1IC)) + exs(X) | H]),
< e(w(X) + (L + eun(B)IH] + en(L + eur(R))CI,
= lH] +7lc],

where the second inequality uses equation (6.4.4). Since i) < 75, rearranging the last
inequality gives ||C||(1 — n) < n||H||. Ignoring O(n?) terms ||C|| < 5||H||. The
estimate on the size of ' in equation (6.4.1) now follows since n = e(k(X) + p(1 +
(X)) < e(n(X) + 1) + O(€2) o

6.4.2 Purging

The success of the purging scheme depends upon the solution of the Sylvester set of
equations required by Algorithm 6.3. We rewrite the Sylvester set of equations in
Algorithm 6.3 as ZHy, — H\yZ = H,3. The job is to examine the effect of performing

the similarity transformation RH.oR™! where

Q1

R=
WE=\ o

R =

ZJES.
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The last relation implies that =1 = Q7. In actual computation, this equality obviates
the need to solve linear systems with R necessary for the similarity transformation.
For the error analysis, that follows R~! is used in a formal sense.

Let Z be the computed solution to the Sylvester set of equations. In a similar
analysis, Bai and Demmel [9] assume that the QR factorization of S is performed

exactly and we do also. The major source of error is that arising from computing Z.

A

A

Suppose that C:)ﬁ = = S. Write Z = Z + E where E is the error in Z. If

QR = S and ||R7Y|||E|| < 1, then Theorem 1.1 of Stewart [89] gives matrices W and
F such that (Q 4+ W)(R+ F) = QR where (Q +W)T(Q + W) = I,,. The result gives
the bound ||F|| < |[R||||E]| + O E||*). Up to first order perturbation terms,

RHpR™ = (R4 F)Hy(R+ F)™' = RHyuR™ + RHpuR'FR™ + FHyu R
Defining the error matrix C = HyyR™'F + R F H,, it follows that
RH,,R™Y = R(Hy + C)R™.
Ignoring second-order terms, we obtain the estimate
ICN < 2B MNEN Haall < 26(SEN ool

The invariance of || - || under orthogonal transformations gives x(5) = |[R™!|||B)|-
Since the singular values of .S are the square roots of the eigenvalues of ST S it follows
that

pr—
w(S) = |1 Tme(2)

1 + g?nin(Z) ’

where 0,,00(Z) and 0.,4,(Z) are the largest and smallest singular values of Z. Since
Z*Z is a symmetric positive semi-definite matrix, Anae(Z7Z) = ||Z||?, and then
k(S) < /14 ||Z]|?, with equality if zero is an eigenvalue of Z7Z.

The previous discussion is summarized in the following result.

Theorem 6.5 Let Z be the computed solution to the Sylvester set of
equations, ZHjyy — Hj1Z = Hyz, where the eigenvalues of Hy; and Hy,
are distinct. Let Z = Z + E where E is the error in Z and suppose that

7]

IR'IE|| < 1 where QR =
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Then there exists a matrix C such that
RHpuR™ = R(Hy+ C)R™Y,

where

(6.4.6) ICI < 2y 1+ ZI EN I H]-

If || E|| is a modest multiple of machine precision and the solution of the Sylvester’s
equations is not large in norm, then purging is backward stable since ||C|| is small
relative to || H|.

The two standard approaches [11, 36] for solving Sylvester’s equation show that
IElF < es(||Hullr + |HallF)||Z||F where F' = Hyy — ZHay + HuZ and ¢ is a
modest multiple of machine precision. Standard bounds [18, 35] also give || Z]|F <
sep™(Hu1, Hao)||Hyz2||F where

. N X Hyy — Hi X||F

sep(fin, ) = wpip = =

is the separation between Hyy and H,,. Although

Sep(Hll,Hgg) S HklillllAk(Hll)‘-/\I(sz)‘,

Varah [94] indicates that if the matrices involved are highly non-normal, the smallest
difference between the spectrums of Hy, and Hyy may be an over estimate of the actual
separation. Recently, Higham [40] gives a detailed error analysis for the solution of
Sylvester’s equation. The analysis takes into account the special structure of the
equations involved. For example, Higham shows that || E||r < sep™'(Hu1, Hy)||F||#
but this may lead to an arbitrarily large estimate of the true forward error. For use
in practical error estimation, “LAPACK-style” software is available.

A robust implementation of procedure Lock determines the backward stability by

estimating both ||Z|| and || E]|.

6.5 Other Deflation Techniques

Wilkinson [101, pages 584-602] has given a comprehensive treatment of various de-
flation schemes associated with iterative methods. Recently, Saad [78, pages 117-
125,180-182] discussed several deflation strategies used with both simultaneous it-

eration and Arnoldi’s method. Algorithm 6.2 is an in place version of one of these
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schemes [78, page 181]. Saad’s version explicitly orthonormalizes the newly converged
Ritz vectors against the already computed approximate j Schur vectors. This is the
form of locking used by Scott [80]. Instead, procedure Lock achieves the same task
implicitly through the use of Householder matrices in R™*™. Thus we are able to
orthogonalize vectors in R™ at a reduced expense since m < n.

Other deflation strategies include the various Wielandt deflation techniques [78,
101]. We briefly review those that do not require the approximate left eigenvectors
of A or complex arithmetic. Denote by Aq,..., }; the wanted eigenvalues of A. The
Wielandt and Schur-Wielandt forms of deflation determine a rank j modification of

A,
(6.5.1) A; = A-U;SUT,

where S; € R/ and j represents the dimension of the approximate invariant sub-
space already computed. The idea is to choose S; so that A; will converge to the
remainder of the invariant subspace desired. For example, S; is selected to be a
diagonal matrix of shifts oy,...,0; so that A; has eigenvalues {A\; — ay,...,); —
Oy Ajgly -y Ante

Both forms of deflation differ in the choice of U;. The Wielandt variant uses
converged Ritz vectors while the Schur-Wielandt uses an approximate Schur basis
set vectors. With either form of deflation, the eigenvalues of A; are \; — o, for 1 < j
and A; otherwise and both forms leave the Schur vectors unchanged. This motivates
Saad to suggest that an approximate Schur basis should be incrementally built as Ritz
vectors of A; converge. Braconnier [16] employs the Wielandt variant and discusses
the details of deflating a converged Ritz value that has nonzero imaginary part in real
arithmetic.

We now compare our locking scheme to the Schur-Wielandt deflation techniques.
We shall assume that AU; = U;R; is a real partial Schur form of order j for A and

we will put S; = R; in the Schur-Wielandt deflation scheme. Suppose that

Rj Mj

(6.5.2) AlU; V] = [U; V] s

. T
:I + fm+j Crtss

is a length m + j Arnoldi factorization obtained after locking. Consider any asso-
ciated roundoff errors as being absorbed in A here. Equate the last m columns of

equation (6.5.2) to obtain

(653) A‘/m = (]]M/ + ‘/mHm + fm—f-je;l,l-
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Since U; is orthogonal to V,,, it follows that (I — UJ-UJ-T)A(I — (]jUf)Vm =V, H, +
fmaj;el. This implies that the Arnoldi factorization (6.5.2) is equivalent to apply-
ing Arnoldi’s method to the projected matrix (I — U;UF)A(I — U;UT) with the first
column of V},, as the starting vector. Keeping the locked vectors active in the construc-
tion and the IRA update of this Arnoldi factorization assures that the Krylov space
generated by V,, remains free of components corresponding to locked Ritz values.
The appearance of spurious Ritz values in the subsequent factorization is automat-
ically avoided. Note that when A is symmetric, this is equivalent to the selective
orthogonalization [61, pages275-284] scheme proposed by Parlett and Scott.

In contrast to locking, consider the consequences of applying the Schur-Wielandt
deflation scheme to construct a new Arnoldi factorization using V,,e; as a starting
vector. In the symmetric case with exact arithmetic, the two schemes would be
mathematically equivalent. Without these assumptions, there may be considerable

differences. From equation (6.5.3), it follows that
(()54) (A — UJ‘RJ‘UJ-T)‘/M = A(I - U7U]T)V;n = U]M] + V;:‘LHHL + fm.}-je';",;-
From equation (6.5.4) we can use an easy induction to derive the relations

m

(A - UJH][]]T)Z‘/;nel = (U7M/ + ‘/mHm)Hi_lelv L Z I.

Thus, the Krylov subspace Ki(A — UJ-RjU]T,Vmel) and hence the corresponding
Arnoldi factorization of A — U;R;U ]T must be corrupted with components in R(U;)
when the starting vector is orthogonal to R(U;). Within the context of Arnoldi itera-
tions, the Schur~Wielandt techniques do not deflate the invariant subspace informa-
tion contained in the R(U;) from the remainder of the iteration.

This helps to explain why Saad suggests that Wielandt and Schur-Wielandt de-
flation techniques should not be used “to compute more than a few eigenvalues and
eigenvectors.”t We note that if M; ~ 0, then the Wielandt forms of deflation may
safely be used within an Arnoldi iteration. This will always be true when A is sym-
metric.

The cost of matrix vector products with A; increases due to the rank j mod-
ifications of A required. Moreover, every time an approximate Schur vector or a

Ritz vector converges, the iteration needs to be explicitly restarted with A;. The

tPage 125 of [78)
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two deflation techniques introduced in this paper allow the iteration to be implicitly
restarted—avoiding the need to build a new factorization from scratch.

Finally, we mention that the idea of deflating a converged Ritz value from a
Lanczos iteration is also discussed by Parlett and Nour-Omid [64]. They present an
explicit deflation technique by using the QR algorithm with converged Ritz values as
shifts. Parlett indicates that this was a primary reason for undertaking the study

concerning the forward instability of the QR algorithm [63].

6.6 Numerical Results

An IRA-iteration using the two deflation procedures of section 6.3.2 was written in
MATLAB, Version 4.2a. An informal description given parameters k and p is given in
Table 6.1. The codes are available from the author upon request. A high-quality and
robust implementation of the deflation procedures is planned for the Fortran software
package ARPACK [49].

In the examples that follow (J; and R; denote the approximate Schur factors
for an invariant subspace of order k computed by an IRA-iteration. All the exper-
iments used the starting vector equal to randn(n, 1) where the seed is set with
randn(’seed’, 0) and n is the order of the matrix. The shifting strategy uses the
unwanted eigenvalues of Hyy, that have not converged. An eigenpair (0,s) of Hyy,

is accepted if its Ritz estimate (2.5.1) satisfies,

(6.6.1) lekaps! | frrnll < el

The value of € is chosen according to the relative accuracy of the Ritz value desired.

6.6.1 Example 1

The first example illustrates the use of the deflation techniques when the underlying
matrix has several complex repeated eigenvalues. The example also demonstrates
how the iteration locks and purges blocks of Ritz values in real arithmetic. A block

diagonal matrix C was generated having n blocks of order two. Each block was of

& m
-m & |’
%z

2(n+1)

the form

where

fi=ivi—1 = 4sin®( ) + 4sin?(

I
ot 1)
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1. Initialize an Arnoldi factorization of length k&
2. Main Loop

3. Extend an Arnoldi factorization to length k4 p

4. Check for convergence
Exit if k wanted Ritz values converge
Let ¢z and j denote the wanted and unwanted converged
Ritz values, respectively

5. Lock the ¢+ j converged Ritz values

6. Implicit application of shifts resulting in an
Arnoldi factorization of length k+

7. Purge the j unwanted converged Ritz values.

Table 6.1 Formal description of an IRA-iteration

for 1 <i,7 <n and 5 = \/§. The eigenvalues of C' are £ & ;i where ¢ = \/—1. Since
the eigenvalues of a quasi-diagonal matrix are invariant under orthogonal similarity
transformations, using an IRA-iteration on ' with a randomly generated starting
vector is general. An IRA-iteration was used to compute the k£ = 12 eigenvalues
of Cys0 with smallest real part. The number of shifts used was p = 16 and the
convergence tolerance € was set equal to 107, With these choices of k¥ and p, the
iteration stores at most twenty eight Arnoldi vectors.

There are four eigenvalues with multiplicity two. Table 6.2 shows the results
attained. Let the diagonal matrix D, denote the eigenvalues of the upper triangular
matrix ;3 computed by the iteration. The diagonal matrix A;; contains the wanted
eigenvalues. After twenty four iterations twelve Ritz values converged. But the pair
of Ritz values purged at iteration twenty one was a previously locked value which the

iteration discarded. This behavior is typical when there are clusters of eigenvalues.

6.6.2 Example 2

Consider the eigenvalue problem for the convection—diffusion operator,

—Au(z,y) + plus(z,y) + uy(x,y)) = Iu(z,y),



[

IRA-1teration for Cys

k =12 and p = 16 with convergence tolerance is e = 10719

Iteration Ritz values Locked Ritz values Purged
9 2 0
10 2 0
12 2 0
13 2 0
17 2 0
21 0 2
24 2 0
28 0 2
31 2 0
Totals 14 4
Number of matrix vector products 436

|Ca50Q12 — Q12 Ria]| = 10712

|Q12C450Q12 — Riz|| =~ 10711

1Q1,Q12 — Tn2|| ~ 10~

”D12 — A12“00 ~ 10—15

Table 6.2 Convergence history for Example one
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on the unit square [0,1] x [0,1] with zero boundary data. Using a standard five-
point scheme with centered finite differences, the matrix L,2 that arises from the
discretization is of order n® where & = 1/(n + 1) is the cell size. The eigenvalues of
L,2 are . .

) 2/ = yeos(T),
for 1 <4,5 < n where v = ph/2. An IRA-iteration was used to compute the k = 6

/\,']' =2 1—7COS(n

smallest eigenvalues of Lgys where p = 25. The number of shifts used was p = 10 and
the convergence tolerance € was set equal to 107%. With these choices of k and p, the
iteration stores at most sixteen Lanczos vectors. Let the diagonal matrix Dg denote
the eigenvalues of the upper triangular matrix Rg computed by the iteration. The
diagonal matrix Ag € R®*® contains the six smallest eigenvalues. We note that there
are two eigenvalues with multiplicity two. Table 6.3 shows the results attained. The
diagonal matrix Dg approximates Ag. After thirty iterations six Ritz values converged.
But the Ritz value purged at iteration twenty four was a previously locked value. The
other purged Ritz values are approximations to the eigenvalues of Legs larger than
As-

Figure 6.3 gives a graphical interpretation of the expense of an IRA-iteration in
terms of matrix vector products when the value of p is increased. For all values of
p shown, the results of the iteration were similar to those of Table 6.3. The results
presented in Table 6.3 correspond to the value of p that gave the minimum number
matrix vector products. For the value of p = 1, the iteration converged to the five
smallest eigenvalues after nine hundred ninety nine matrix vector products. But the
iteration was not able to converge to the second copy of As. For p = 2, the only form
of deflation employed was locking. All others values of p shown demonstrated similar
behavior to that of Table 6.3.

In order to determine the benefit of the two deflation techniques, experiments were
repeated without the use of locking or purging. In addition, all the unwanted Ritz
values were used as shifts, converged or not. The first run used the same parameters
as given in Table 6.3. After 210 matrix vector products, the iteration converged to
six Ritz values. But the second copy of the fifth smallest eigenvalue was not among

the final six. The value of p was increased to twenty three with the same results.



IRA-1teration on Lggs

k =6 and p = 10 with convergence tolerance is ¢ = 1073

Iteration Ritz values Locked Ritz values Purged
14 1 0
16 1 0
19 1 0
21 1 0
23 1 1
24 0 1
30 1 0
35 0 1
38 1 1
Totals 7 4
Number of matrix vector products 325

| Leas Qs — Qs Re|| =~ 1077

Q& LeasQe — Ro|| ~ 107°

Q2 Qs — Is|| = 1014

”DG — A(_;”OO ~ 10_‘7

Table 6.3 Convergence history for Example two
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Figure 6.3 Bar graph of the number of matrix vector products used
by an IRA-iteration for Example 2 as a function of p.

6.6.3 Example 3

The following example shows the behavior of the iteration on a matrix with a very ill
conditioned basis of eigenvectors. Define the Clement tridiagonal matrix [41] of order
n—+1

0 n 0

1 0 n—-1
Bn+1 -

0 7 0

The eigenvalues are £n,+n —2,---,£1 and zero if n is even. We note that B, =

- D . - ” — 1 . . .
Sp+1Ans154, where 52, = diag( e nn=l .. B s a diagonal matrix. Thus the

condition number of the basis of eigenvectors for B, is

Sp+1l11S;41 1l which implies

that the eigenvalue problem for B, ; is quite ill conditioned. An IRA-iteration was
used to compute the k = 4 largest in magnitude eigenvalues of Bjgpo. The number
of shifts used was p = 16 and the convergence tolerance ¢ was set equal to 1076,

With these choices of k and p, the iteration stores at most twenty Arnoldi vectors.
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Let the diagonal matrix D, denote the eigenvalues of the upper triangular matrix R4
computed by the iteration. The diagonal matrix Ay € R*** contains the four largest
in magnitude eigenvalues. Table 6.4 shows the results attained.

Although the iteration needed a large number of matrix vector products, the

iteration was able to extract accurate Ritz values given the convergence tolerance.

6.6.4 Example 4

Finally, we present a dramatic example of how the convergence of an IRA-iteration

benefits from the two deflation procedures. A matrix T of order ten had the values
v = 1077, viz2s = 1- 1077, 09,10 = 1,

on the diagonal. Since the eigenvalues of a matrix are invariant under orthogonal
similarity transformations, using an IRA-iteration on T with a randomly generated
starting vector is general. An IRA-iteration was used to compute an approximation
to the smallest eigenvalue. The number of shifts used was p = 3 and the convergence
tolerance € was set equal to 107>, Table 6.5 shows the results attained.

Another experiment was run with the locking and purging mechanisms turned off.
Additionally, all unwanted Ritz values were used as shifts. The same parameters were
used as in Table 6.5 but the iteration now consumed forty one matrix vector products.
As in the results for Table 6.5, the modified iteration converged to one of the dominant
eigenvalues after one iteration. After six iterations, the leading block of Hy split off,
having converged to the invariant subspace corresponding to vg.10. But since purging
was turned off, the modified iteration had to continue attempting to converge to v,
using only the lower block of order two in Hy. Incidently, if the iteration instead
simply discarded the leading portion of the factorization corresponding to vg.io after
the sixth iteration, convergence to v; never occurred. Crucial to the success of an
IRA-1teration is the ability to deflate converged Ritz values in a stable manner. Both

purging and locking allow faster convergence.



IRA-1teration on Biggo

k =4 and p = 16 with convergence tolerance is ¢ = 10~°

[teration Ritz values Locked Ritz values Purged
76 1 0
85 1 0
91 2 0
Totals 4 0
Number of matrix vector products 1423

| Brovo®Q4 — Q4R4||/|| Brooo|| = 10~¢

|Q4 BioooQ4 — Ral| = 1075

1QTQ, — I|| =~ 1071

| D4 = Adlloo/]| Brooo)loo = 107¢

Table 6.4 Convergence history for Example three

IRA-1teration on T'

k =1 and p = 3 with convergence tolerance is ¢ = 1073

Iteration Ritz values Locked Ritz values Purged
1 0 1
15 1 1
Totals 1 2
Number of matrix vector products 32

ITQ1 — QuRy||/vr ~ 10-3

||CU)¥1TQ1 — R1||/v1 ~ 10_3

1Q1Q1 — L] ~ 1077

|R1 — v1loo/v1 = 1073

Table 6.5 Convergence history for Example four
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Chapter 7

Maintaining Orthogonality during an
IR A-iteration

Probably the single most important factor governing the robust implementation of
an IRA-iteration is that of computing an orthogonal set of Arnoldi vectors defined
by the columns of Vi in Algorithm 2.2 of Chapter 2. If Algorithm 2.2 of Chapter 2
is used to compute an Arnoldi factorization, a point is typically reached where the
columns of the Arnoldi matrix constructed will no longer be orthogonal to the resid-
ual vector. Thus, we require a computational procedure that monitors the possible
loss of orthogonality in an inexpensive manner. Additionally, an efficient and stable
computational procedure is needed to enforce orthogonality when needed.

The Arnoldi/Lanczos factorizations fell from favor among numerical analysts due
to the observed loss of orthogonality soon after their discovery. The work of Paige [57]
revived the Lanczos factorization since it explained the significance of the loss of or-
thogonality that occurred in actual computation. This chapter introduces the ad-
ditional difficulties associated with nonsymmetric A and reviews the ways in which
orthogonality may be enforced. We first explain the loss of orthogonality of an Arnoldi
factorization in § 7.1. The significance of the loss of orthogonality during the Lanczos
iteration is discussed in § 7.2. The different approaches used to ensure orthogonality

are surveyed in § 7.3.

7.1 Orthogonalization and the Arnoldi Factorization

Computing the Arnoldi factorization in finite precision gives
(711) AVk = Vkﬁk-f-fkeg-f-f?k,

where R; € R™** accounts for the roundoff error and hatted quantities are computed
analogues of those in Algorithm 2.2. The residual fk is the computed projection of
Af/kek = A0, onto the R(Vk): f'k =(I - %‘A/,CT)Aﬁk Figure 7.1 shows this geometric
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relationship. From Algorithm 2.2 of Chapter 2, the residual fk associated with the
length k& Arnoldi factorization becomes the (k + 1)-th Arnoldi vector.

A forward error analysis shows that ||Ri|| = O(ear)||A|| where eps designates the
machine precision. Although equation (7.1.1) is an exact relationship it does not
follow that ||VkT fk|| = || f'k“ek where ¢, & €p. A robust implementation computing
an Arnoldi factorization has VkTVk = Iy + E) where ||Ei|| = €p. Thus, the loss of
orthogonality may be studied by analyzing the construction of f and the resulting
vector VkT fk. Numerical difficulties may be expected when fj is nearly in the ’R(Vk)

or equivalently, the angle ¢ in Figure 7.1 is small.

7.2 Loss of Orthogonality

As mentioned after Algorithm 2.2 of Chapter 2, a three term recurrence may be used
to compute the residual vector f’k when A is symmetric. Unfortunately, computing
in floating point arithmetic removes the possibility of an exact three term recurrence:
Since the columns of Vj, are only approximately orthogonal, the computed f'k depends
on all the columns of V;. The work of Paige [57] was the first to analyze the effects
of floating point arithmetic upon the Lanczos factorization. Bai [5] recently ana-
lyzed the nonsymmetric Lanczos procedure. Both Paige and Bai demonstrate that a
loss of orthogonality is accompanied by a group of Ritz pairs emerging as excellent
approximations to eigenpairs of A. The Arnoldi factorization lacks a similar result.

If orthogonality is not enforced, as the Lanczos factorization is extended, further
copies of the “converged” Ritz values emerge. Determining whether these spurious
copies are not actual eigenvalues of A of multiplicity greater than one is not an easy
task. Cullum and Willoughby [21] present heuristics that attempt to distinguish the
spurious Ritz values from the actual multiple ones.

For symmetric A, Simon [81] presents a comprehensive study of the impact orthog-
onalization methods have on the Lanczos iteration using the three term recurrence.
This includes the work of Parlett and Scott [66] on selective orthogonalization. The
analysis presented by Paige shows that the computed residual vector fk losses the
most orthogonality in the direction of the Ritz vectors associated with the Ritz val-
ues that are nearly eigenvalues of A. Selective orthogonalization is a strategy that
seeks to correct the loss of orthogonality in only these “converged” directions. We
remark that the locking of Ritz pairs with small Ritz estimates presented in Chapter 6

is also a selective orthogonalization method.
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Vh

Range(V)

Figure 7.1 Projecting Avy = Av onto the column space
of Vi =V and its orthogonal compliment.

7.3 Practical Implementations

The problem of computing an orthogonal residual vector fk is equivalent to updating
the approximate QR factorization of

(7.3.1) [V A0 ] = [V B;;lfk][g’“ ;‘fiﬂ

where we use the notation of Algorithm 2.2 of Chapter 2. The factorization exists
as long as fi41 is not equal to zero. From Figure 7.1 we see that (4 = || Avk]| sin ¢
implying that for small ¢ the computed residual f'k has probably suffered cancelation.
We emphasize that this cancelation is responsible for the loss of orthogonality between
Vi and fi even though || fi — fil = Ol(en)|| Al

establish these important relationships.

. Theorems 1 and 2 in Hoffmann [42]

There are several ways to compute a residual f that is numerically orthogonal
to the columns of V. Hoffmann [42] analyzes in detail iterative algorithms for
computing the QR factorization of a matrix using Gram-Schmidt methods. In the
special case where Vi is a single vector, an unpublished result of Kahan found in
Parlett [61, pages 105-109], shows that orthogonality to working precision is accom-
plished with at most one step of re-orthogonalization. Their decision to perform a
re-orthogonalization is based on whether the cosine of the angle between the computed

projection f; and A®; is less than some prescribed tolerance. This leads Saad [78,
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page 177] along with Reichel and Gragg [67, page 372] to conjecture that at most one
step of re-orthogonalization suffices for the more general result of orthogonalizing one
vector against a group of others. Although widely believed to be true, there exists
no proof for how many re-orthogonalizations are required for the more general case
of orthogonalizing a vector against a group of others. For example, Bjorck [14] states
that Hoffmann’s analysis proves that at most one re-orthogonalization suffices for
the more general case but no proof is offered. Hoffmann’s extensive experimentation
never revealed the need for a second orthogonalization but that this would always be
true was never rigorously justified.

The decision to perform another step of orthogonalization for the more general
case required by Algorithm 2.2 is essentially the same as for the two vector case.
If the ratio ||A[)kH/kaH = sin¢ is less than a prescribed tolerance n then a re-
orthogonalization of fi against all the columns of Vi is performed. Performing the
first re-orthogonalization step for the Arnoldi factorization in equation (7.1.1) results
in
(7.3.2) AV = Vi(Hi + geel) + (fu = Vigr)ed + B,
where g = VT fi. The goal is to force |VI(fr — Vigr)ll = O(ea)|| fr = Vigell. We

remark that the eigenvalues of B + grel now approximate those of A. The next

section considers determining whether this process needs to be repeated.

7.3.1 DGKS Analysis and Method

Daniel, Gragg, Kaufman, and Stewart [22] present a numerically stable algorithm for
updating the factorization of equation (7.3.1). Their formulation is summarized by
Algorithm 7.1. For clarity, the subscripts are dropped and the algorithm is used at

every step j of Algorithm 2.2 to compute a numerically orthogonal residual vector f;.

Algorithm 7.1

1.1 h0;
1.2 f « Av;
1.3 Begin loop ;

21 we f;
2.2 g—VTw;
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23 h—h+yg;
24 f—w-Vyg;
1.4 Repeat loop until || f]| > nljw| ;

The loop in Algorithm 7.1 is entered a second time if the sine of the angle between
f and Av is less than or equal to 1. The parameter 5 is chosen to satisty 0 <7 < 1.
Larger values of  will result in more work while smaller values result in a relaxing of
the orthogonality between V and the final f. Further iterations of the loop are only
required if the cosine of the angle between successive approximate residual vectors is
less than or equal to . Intuitively, after the second pass through the loop, termination
depends upon successive approximate residual vectors being nearly aligned. Analysis
by Daniel et al. [22] shows that Algorithm 7.1 eventually terminates given some mild

assumptions on the model of floating point arithmetic used.

7.3.2 Classical and Modified Gram-Schmidt Orthogonalization

Algorithm 7.1 is an implementation of iterative classical Gram-Schmidt (cGs) or-
thogonalization. It is well known that ¢GS orthogonalization is not a stable algo-
rithm for computing the QR factorization of a matrix. On the other hand, a simple
rearrangement of the CG$ process, the modified Gram-Schmidt algorithm (MGS) is
conditionally stable. If we denote the j-th column of Vi by 0j, the MGS and CGS

algorithms for computing fi are mathematically equivalent to

(7.3.3) fo — (I, —oxdF) - (I, — 0167) Ay,
7.3.4 fk — In - f/kf/? A,()ka
k

respectively. In exact arithmetic, both variants are the same. However, as Bjorck [13]
showed, both may compute drastically different residual vectors in floating point
arithmetic.

Jsing MGS orthogonalization to compute the QR factorization of equation (7.3.1)

results in

||Q£+1Qk+1“fk+1ﬂ ~ K(}A?,Hl)eM,

. S s . I hy
where Qr41 = [ Vitr Big1fe ] and Ry = Ok Bkﬂ , and the condition number of
k+1

[ Vi Aby ] is approximated by k(Rp41) = ||f?;il||||]§’k+1|| Thus, a small B4 gives

a large condition number and hence MGS may not be stable.
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However, Hoffmann’s [42] analysis shows that the iterative versions of cGs and
MGS orthogonalization, i.e. performing re-orthogonalizations to ensure orthogonality,
are stable. From equation (7.3.4), the main computation of CGS orthogonalization
involves the matrix—vector products iLk.H = WT'LBk and Wy — f/kizk,ﬂ where wy Avy.
Hence, iterative CGS orthogonalization is better suited for vector and parallel comput-
ing because of the matrix vector products. Instead, iterative MGS orthogonalization
involves a recurrence of vector-vector operations ; = f)JT'uA)k and Wy — 0,4, to compute

the residual.

7.3.3 Using Householder Transformations

Another alternative that must be mentioned is that of employing Householder trans-
formations as introduced by Walker [95]. Walker presents an algorithm for computing
a sequence of Householder matrices P4, ..., P so that a length £ Arnoldi factorization
is constructed for Py --- PLAP, --- P,. Saad [78, page 177] compares the cost of the
two Gram—Schmidt variants with Walker’s Householder approach. For modest values
of k, the Householder approach requires about twice as many floating point opera-
tions as the iterative Gram—Schmidt one if no re-orthogonalizations are required—an
unlikely occurrence. The Householder and the iterative Gram-Schmidt orthogonal-
izations methods for computing a length k& Arnoldi factorization are roughly the same
when every column of Vj requires a re-orthogonalization. In addition, Walker consid-
ers the efficient implementation of the Householder approach on a parallel machine.
Further study is needed to determine the comparative numerical behavior as well as

the efficiency of the competing orthogonalization algorithms.

7.3.4 ARPACK Software

The ARPACK [49] software currently uses cGS with possible re-orthogonalization at
each step. This remains feasible within an IRA-iteration since storage requirements
for the Arnoldi basis vectors may be fixed in advance of the iteration. The imple-
mentation is efficient since the level 2 BLAS [26] are employed. The matrix—vector
multiplications often allow the underlying architecture of the computer to be more
efficiently utilized. Parallel and vector computers exemplify this behavior.

The actual choice for the parameter 5 is as follows. When A is symmetric, the value
of 7 =.5 = sin 7/6 results in a good compromise between maintaining an orthogonal

set of Lanczos vectors without an unnecessary amount of re-orthogonalizations. For
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nonsymmetric A, the value of 7 = 1/v/2 = sinn/2 achieved the same goal. Work is
underway to better understand the selection of 7 and its impact upon the numerical

orthogonality of the Arnoldi vectors.
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Chapter 8

Some Practical Aspects for the Convergence of
an IR A-iteration

The determination of the parameters k and p needed during an IRA-iteration requires
further analysis as mentioned at the end of § 4.2 of Chapter-4. The value of k is
typically the number of eigenvalues of A requiring approximation. At present, there
is no a-priori analysis to guide the selection of p relative to k. Increasing p relative
to k usually decreases the required number of matrix vector products with A needed
by Algorithm 4.2 but it also increases the work and storage required to maintain the
orthogonal Arnoldi basis vectors. The optimal cross-over value of p depends upon
A’s spectral properties and the underlying computer system.

One of the goals of this chapter is to present some heuristics and formal anal-
ysis that help in selecting of p relative to k. A connection was made between an
implicitly shifted QR-iteration and the IRA-iteration in Chapters 3 and 4. There is
also a well known connection between simultaneous, or subspace, iteration and the
QR-iteration. Subspace iteration is an extension of the simple power method applied
to a starting matrix consisting of linearly independent vectors. When the columns of
the starting matrix are orthonormal, subspace iteration is also referred to as orthog-
onal iteration. Thus, we may then make use of the practical knowledge known about
orthogonal /subspace iteration methods.

Simple orthogonal iteration is introduced in § 8.1. A more elaborate version,
shifted orthogonal iteration is the subject of § 8.2. Comparing orthogonal iteration
and an IRA-iteration is considered in § 8.3 including an adaptive procedure for pre-
venting stagnation and accelerating the convergence of the iteration. An implicitly
shifted orthogonal iteration algorithm, analogous to the IRA-iteration, is introduced

in the final section.
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8.1 Orthogonal Iteration

Suppose that AQ = QR is a real Schur decomposition where we partition @ =
[ Qr Qs ] and the eigenvalues are ordered in descending order of magnitude along
the quasi-diagonal of R. If |Ax| > |Aks1]| then Di(A) = R(Q%) is said to be the
dominant invariant subspace of dimension k for A.

Simple orthogonal iteration is defined by the following procedure:
Algorithm 8.1  (Simple Orthogonal Iteration)

1.1 Initialize : UM e [ &1 €2 -+ ex |
1.2 Fory =1,2,...;

2.1 WY = AUY ;

2.2 Compute the QR factorization U;EHI)RESHI) = W,Ej) ;
1.3 End ;.

Golub and Van Loan [35, page 354] show that if
(8.1.1) Di(AT)t N Span{e;}i, = {0},

then R(U,ﬁj)) — Di(A) as j — oo and rate of convergence is proportional to |Ar41/ Akl
Thus, (U,ﬁj’)TAU,ﬁj) = Tk(j) is converging to Ry = QF AQk. The geometrical interpre-
tation of the subspace condition in equation (8.1.1) is that a vector in Span{e;}¥_,
must have a nonzero component in the direction of some vector in Dx(A). Since
AQ = QR implies that ATQ = QRT, we may equate the last n — k columns to obtain
that Di(AT)* = R(Qu-r).

As Golub and Van Loan [35, page 355] also observe, the QR-iteration is orthogonal

iteration in disguise. Consider the identities
(812) TP = (UP)TAUY = UPTWH = UP)TUGHIRG,
and

TUH) = (UUHD)T AU+
= (U7(Lj+l))TAU7(LJ')(U7(L.7'))TU1g.i+l)
(8.1.3) = RUTD(@HTyL+Y),
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The identity in equation (8.1.2) computes the QR factorization of RY while the
second in equation (8.1.3) multiplies the factors in reverse order to get RU+)
successive orthogonal iterations define a QR step with shift zero ! This is also im-
plied by Theorem 3.2. We remark that if A is first reduced to upper Hessenberg
form H, and Algorithm 8.1 is used with A replaced with H, then HY) = T and

(UINTUUH) = QU) where zero shifts are used.

8.2 Shifted Orthogonal Iteration

The following extension of orthogonal iteration allows a set of shifts to be applied.
This allows the possibility of converging to another invariant subspace of A besides
the dominant one. We present the algorithm first and then discuss its many features

at some length.

Algorithm 8.2  (Shifted Orthogonal Iteration)

function [Uy, Ti] = orthit(A,k,p)

Output: AUy — UTy = F; where the residual matrix F} is small in norm,
UTUy = I, and UL Fy, = 0 and T} is upper quasi-triangular.

11 Initialize : Uy, « [ e €2 ey | 5
1.2 For 3y =1,2,.
21 W, H«/z,(,z)( U, where PO(N) = (A = 77) - (A = 7)) ;

2.2 Compute the QR idctorlzaflon : ngp §j+)p W,Efp ;

2.3 Wk(i)p — A62k+p ) Bk+p (Qk+p) k-l-p )
() 7) pld)

2.4 Compute the real Schur decomposition Bk+ka+p Zk+ka+p
with the k wanted eigenvalues in the leading principal matrix
T(] ) , of order k, in Tk(j_)p

+1
25U ] s Qk-ﬂa k+7);

2.6 Determlne convergence ; Deflate converged Ritz vectors ; Modify

p if desired ;

1.3 End ;.

We now consider many of the details that will lead to a robust implementation

of Algorithm 8.2. As we shall see, many of these details will carry over to a robust
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implementation of an IRA-iteration. In particular, we consider the two codes, EA12 by
Duff and Scott [28] and SRRIT, by Bai and Stewart [10], as model implementations.
We remark that SRRIT is only set up to compute A’s dominant invariant subspace
and EA12 also computes this space as well the invariant subspace corresponding to
A’s right-most or left-most eigenvalues.

Line 2.1 applies the m shifts Ti(j ). In order to avoid the use of complex arithmetic,
if any shift has a nonzero imaginary part, its complex conjugate is also a shift during
the same cycle of iteration. As with the IRA-iteration, there are many choices. One
could use an exact shift strategy, applying the unwanted m = p eigenvalues of T,SJ 2
as shifts during the j-th iteration. This leaves an arbitrary choice of during the first
iteration. As discussed in [28], the matrix polynomial P& (A) is not formed. Rather,
the columns of 'P,(,{ (AU, () are formed using the recurrence W,fi)p — (A- 'r,-(j )1 WU ,Si)p
fore = 1,...,m. If a Chebyshev polynomial is used, the three term recurrence
should be employed [76]. We note that if all the shifts applied are zero, then simple
orthogonal iteration is recovered.

The degree m of the polynomial applied should not be chosen too large for oth-
erwise the columns of W,ﬁ_)p will become linearly dependent. However, a small value
of m leads to unnecessa.ry orthogonalizations. The important property is that the
columns of I/V,c +p of line 2.1 remain numerically linearly independent. Guidelines are
provided in [10, 28] for the software determining the degree in an adaptive fashion.

Line 2.5 uses a Schur-Rayleigh-Ritz, SRR, step to ensure that Uge; converges
to the ¢-th Schur vector corresponding to some ordering of the eigenvalues of A.
Originally introduced by Stewart [88] within the context of simultaneous iteration,
P,S{J)(/\) = A", performing a SRR step gives that U(J) e; converges to the Schur vector
associated with the ¢-th largest in magnitude eigenvalue of A. Each column of U ,Ei)p
converges at the rate of |Apyp11/A:i| where A’s eigenvalues are ordered in descending
order of magnitude. Thus, the initial columns of A rip converge faster than the latter
ones and increasing the value of p allows a faster rate. We remark that a SRR step does
not actually accelerate convergence: The effect is to unscramble the approximations
79 Stewart [88] made this

k+p*
observation and both Chatelin [18, page 253] and Saad [75, page 132] give elegant

to Schur vectors already present in the column space of [

but elementary proofs.
Both EA12 and SRRIT compute the [-the column of the residual matrix AU ,Eﬂr";l
U,gi;l)T,SQp, where the first [ — 1 columns have already converged. Bai and Stewart

further discuss the convergence of SRRIT to the invariant subspace corresponding to
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nearly equimodular eigenvalues. As the columns of U,Eﬂ_)p converge, deflation tech-

niques such as locking should be employed.

8.2.1 Convergence of Shifted Orthogonal Iteration

Algorithm 8.2 requires a non-negative value of p. The last p columns of U, ,Ei_)p are called
guard vectors. When P,(,{])()\) = A" increasing the number of guard vectors acceler-
ates the convergence of Algorithm 8.2 to the wanted invariant subspace. However, the
number of matrix vector products with A also increases as well the work necessary
to maintain the orthogonality of U, ,g‘i_)p. As with an IRA-iteration, the decision on how
to choose p depends upon many factors.

Watkins and Elsner [100, pages 29-35] provide convergence results for a non-
stationary, i.e. shifted, subspace iteration which gives an indication of how p might
be selected. We present one of their results, which is seen to be a generalization of

the Golub and Van Loan [35] one for the non-stationary case, referenced in § 8.1.

Theorem 8.3 Let A € R"*". Suppose that the eigenvalues of A are all
of algebraic multiplicity one and denote by Ay, Az, ..., A, some ordering of
A’s eigenvalues. Let a real Schur decomposition AQ = QR be given where
Q= [ Qitp Qu-kp ] and 62£+pA62k+,, = Rj4p contains the eigenvalues
A1, ..., Ak4p Where complex conjugate pairs are kept together: A; = A;
implies that ¢, 7 < k+ p. Define the matrix U,S_)p = [ €1 €y Ekap

Let Par,(A) = 9(A) - - - pI)(X) be the product of a sequence polynomials
for some positive integer J such that Pps, (X)) #0forz=1,...,k+p and
Mj; = my---my Also assume that if any root of 1) (A) has a nonzero

imaginary part, its complex conjugate is also a root.
If R(U,S}I_)p) N R(Qu-t—p) = {0} and

max _ |Par,(Ai)]

k+p+1<i<n

min |Par, (M)]

1<i<k+p

(8.2.1)

0,

as J — oo then the non-stationary iteration defined by Par,(A)U ,E(J’r)p con-
verges in the sense that R(U,ﬁfp) — R(Qrtp)-

Proof See Theorem 5.1 in [100, page 29]. 0
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The geometrical interpretation of the subspace condition
R(UEL) N R(Guiy) = {0}

of the theorem is similar to that given in § 8.1 for simple orthogonal iteration. Some

. k . . . .
vector in Span{e;} ]-__"ff must have a nonzero component in the direction of some vector

in R(Qk+p)
If P()( ) =A™ and [A| > A2} > oo+ > |Au| where |Ax] > [Ax41]| then tradi-

m
tional subspace iteration is recovered. The ratio in equation (8.2.1) gives the rate of
convergence |Agipt1/Aktp| for U,EQP approaching A’s dominant invariant subspace.
For more general shifting strategies, the ratio in equation (8.2.1) gives the global
rate of convergence of Algorithm 8.2 to an invariant subspace. Using SRR steps, we

formally extend Stewart’s result to Ugy,e; converging at the rate of

pp x| P, (M)

min |Pas, (Ai)]

1<i<i

(8.2.2)

This convergence rate may be significantly better than the one given by |Agspt1/M]
when the interest is in the Schur vectors associated with A’s dominant invariant
subspace. Since the convergence rate is a complicated function involving the shifts
applied, it is not an obvious decision on how to select the optimal value of p that
leads to the optimal convergence. Further numerical experimentation is needed.
Again, as noted in § 4.2 of Chapter 4 with an IRA-iteration, the success of

Algorithm 8.2 depends upon the quality of the shifting strategy.

8.3 Comparing Orthogonal and an IRA-iteration

It is instructive to compare an IRA-iteration with that of Algorithm 8.2. For each of
Algorithms 8.2 and 4.2 (an IRA-iteration) of Chapter 4, we have
G+1)  _ (J+1) 7 (+1) -(j+1)
AV}c+p - Vk+p Hk'H‘ + fk+p k+P7
AQk+p = Qk]—i)-ka+p + Fk(i)p’

respectively. We comment that at this point of each algorithm, a polynomial $()())
has been applied. Algorithm 8.2 applies the polynomial matrix 1)(A) at the begin-
ning of its iteration to the columns of [ ,Ei)) while Algorithm 4.2 applies the polynomial

during the implicit application of the shifts.
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Note that (‘/k]+l))TA‘/k(i:1 Hk]H and (Qk+p)T 4Qk+p = B. Both matrices
represent the orthogonal projections of A onto two, in general, different column spaces.
Suppose the same shifts are applied during each iteration of Algorithms 8.2 and 4.2:
¢1(f)()\) = g/),(,a()\) for 2+ = 1,...,7 where the polynomials z/);i)()\) of degree p were
defined in the development leading up to equation (4.2.7) of § 4.2 in Chapter 4. The

column spaces are:

RIVEMY = Kiyp(A4,00H)
= ’Ck+p(A>,Pjp(A)U§l))a
R@QYL) = REYAUL,)

m

= R(Py(AUL).

) _ (1)

Moreover, suppose that v; * = e; and recall that U’ represents the first k+p columns
of the identity matrix. Algorithm 8.2 computes the leading k + p columns of the QR
factorization of P;,(A). On the other hand, if we assume that the grade of e; is at
least k + p, Algorithm 4.2 computes the leading k + p columns of the Krylov matrix
Kiip(A, Pip(A)er).

As explained in § 4.2 of Chapter 3, the last p columns of the above Arnoldi
factorization are discarded because of the fill-in suffered by ef, Z (#), Extending the
ensuing length k£ Arnoldi factorization to length &+ p allows, in general, a different set
Ut

of Arnoldi vectors to be appended to the last p columns of V7" during each cycle
of iteration. This is one of the major differences between Algorithms 4.2 and 8.2.
Algorithm 8.2 applies a polynomial in A to the same initial subspace determined by
the R(U ,Ei)p)

Parlett [62] presents an excellent survey comparing the Lanczos and Subspace it-
erations for the symmetric eigenvalue problems arising in structural mechanics. The
conclusion reached is that the Lanczos iteration is almost always a superior algorithm.
The literature is sparse for similar comparisons between Arnoldi’s and Subspace it-
eration for nonsymmetric eigenvalue problems. As Chatelin [18, page 281] notes, the

choice between the two nonsymmetric algorithms is not so clear.

8.3.1 Adaptive Procedures used within an IRA-iteration

As explained in § 3.2 of Chapter 3, the QR-iteration is a nested sequence of subspace

iterations. Since the IRA-iteration is just the leading portion of the QR-iteration,
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this section gives an indication of how to determine the value of p needed by an
IRA-iteration by considering the formal connections with subspace iteration.

The application of shifts during an IRA-iteration is analogous to performing a
SRR step. Lines 2.3-2.4 of Algorithim 4.2 effectively apply the SRR step: The first &k
columns of Z® span the wanted invariant subspace of Hk+p and the resulting updated

Arnoldi factorization
AV;VJ) 7 _ Vk(J) JAG H,g{:;l + fk+p k+Pz(7))’

of Line 2.4 represents the application of the SRR projection. As equation (8.2.2)
indicates, the optimal choice of p is a complicated decision. On the one hand, the
number of shifts applied should be sufficient so that 1/),(Jj)(A) annihilates the unwanted
components of v{j ). On the other hand, since application of the shifts is equivalent to
a SRR step, the discussion following Theorem 8.3 indicates that too large of a value
of p may slow down convergence. Extensive numerical experiments dictate that the

value of p should be slightly decreased during each iteration.

8.4 Implicitly Shifted Orthogonal Iteration

The main expense of Algorithm 8.1 is the formation of matrix vector products with
A at lines 2.1 and 2.3. The application of the polynomial in A may instead be applied
implicitly through B and hence the cost of Algorithm 8.1 may be reduced. We first
establish the following result.

Lemma 8.1 Let A € R**", B € R¥* and U € R*** with UTU = I,.
Let AU = UB + F where F = AU —-UB. It P(A\) = (A=71)-+ (A= 7)
then

(8.4.1) P(A)U = UP(B)+F,
where F' = P(A)U — UP(B).
Proof The proof is by induction. Consider applying the polynomial of degree one ;

AU = UB+F,
AU-nU = UB-nU+F,
(A-=nL)U = U(B-nl)+F,
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and the base case is established. Suppose that equation (8.4.1) holds for all monic
polynomials of degree less than or equal to m — 1. Defining F = AU — UB it follows
that

(A - TTILI7L)P(A)U = (A - T’IILITL)(]P(B) + (A - TmIn)Fa
= U(B - 7.0y)P(B) + FP(B) + (A — 7, 1,)F.

Finally, the result on the residual follows since

FP(B)+ (A= 7.I)F = (AU=UB)P(B)+ (A - r.L)(P(A)U — UP(B)),
= —UBP(B)+ (A - 1.L.)P(A)U + 7,,UP(B),
= (A—1.L)P(AU - U(B — 1,1;)P(B).

O

Although m matrix vector products during each cycle of the iteration with A

may be avoided, the error in using P(B) is F' = P(A)U — UP(B). As the range of U

improves as an approximation to an invariant subspace of A, the error F'is accordingly

reduced. If AV = VT, where T is upper triangular, then a simple calculation shows
that P(A)V = VP(T) and hence the residual

P(A)V —VP(B)=V(P(T)—-P(B)) =0,

since P(B) = VIP(A)V.
Computing the orthogonal factorization P(B) = QR we obtain,

(8.4.2) P(AU = UQR+F.
Post-multiplying equation (8.4.2) by @) results in

(8.4.3) PAUQ) = (UQRTP(B)Q + FQ,

since RQ = QTP(B)Q. Thus, m QR steps are performed with the set of shifts
{7i}12,. Note that post-multiplication with the orthogonal @) in equation (8.4.3) does
not change the size of the error F. Lines 2.1—2.3 of Algorithm 8.1 may be replaced

to obtain the following procedure:
Algorithm 8.4

2.1 Compute the QR factorization : Qﬁp k]-i)-p 'P(J)(B) where

m
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PON = (A=) (A =7 ;

’"L]' T
2.2 WY — avg) V) .

An interesting observation is comparing the application of shifts in Algorithm 4.2
with the above implicit application of shifts. Algorithm 4.2 discards the last p columns
due to the fill-in that occurs, in contrast to the above implicit application of shifts.
( See Figures 4.1— 4.3 of Chapter 4 for an illustration of the fill-in. )

The convergence properties and numerical behavior of the above implicitly shifted
orthogonal iteration requires further investigation. For example, what is the conver-
gence of rate of Algorithm 8.4 when the interest is in A’s dominant invariant subspace,
i.e. using zero shifts ? If the convergence rate is competitive with Algorithm 8.2, then
a significant savings in computational effort may be realized by avoiding m matrix-

vector products during each iteration cycle.
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Chapter 9

Thesis Summary and Future work

This dissertation has examined Sorensen’s implicitly re-started Arnoldi iteration.
After an introduction to the goals and subject of the thesis in Chapter one, the
second and third chapters established the connection that an IRA-iteration is mathe-
matically equivalent to building only the leading portion of a QR-iteration of a matrix.
The practical QR algorithm was considered in some detail since the major goal of this
thesis is to present numerical techniques that result in a robust implementation of an
IRA-iteration. Chapter 4 both investigated and surveyed the various ways in which to
re-start an Arnoldi factorization. It was shown that the IRA-iteration uses the same
mechanism as the implicitly shifted QR algorithm and thus enjoys its many stability
properties. Chapter 5 examined the possible loss of forward stability that an IRA-
iteration undergoes and considered its impact upon the Ritz values. A fundamental
connection between the algorithms used to re-order a Schur decomposition and an
IRA-iteration was also made. The forward instability of QR algorithm was shown
to be responsible for the occasional failure of the implicit re-starting technique. A
sensitivity analysis was also presented for the orthogonal reduction of a matrix to
upper Hessenberg form. Thus, the forward instability of an IRA-iteration was seen to
have a geometric interpretation: Small components of the starting vector that are in
unwanted invariant subspaces are possibly amplified during the iteration.

Deflation techniques for an IRA-iteration were the subject of Chapter 6. The first
technique, Locking, allows an orthogonal change of basis for an Arnoldi factorization
which results in a partial Schur decomposition containing the converged Ritz values.
The corresponding Ritz value is deflated in an implicit manner. The second technique,
Purging, allows implicit removal of unwanted converged Ritz values from the Arnoldi
iteration. Both deflation techniques are accomplished by working with matrices in
the projected Krylov space which for large eigenvalue problems is a fraction of the
order of the matrix from which estimates are sought. Since both deflation techniques
are implicitly applied to the Arnoldi factorization, the need for explicit re-starting

associated with all other deflation strategies is avoided. Both techniques were care-
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fully examined with respect to numerical stability and computational results were
presented. Convergence of the Arnoldi iteration is improved and a reduction in com-
putational effort is realized. The numerical examples demonstrate how the deflation
techniques remove the requirement for a block Arnoldi/Lanczos method to compute
approximations to multiple or clustered eigenvalues.

The final two chapters surveyed and presented formal analysis for the practical
issues associated with maintaining orthogonality of the Arnoldi vectors and choosing
p, the number of shifts to apply. In addition, two simultaneous iteration algorithms

were introduced that require further investigation.

9.1 Future Work

There remain several areas that require further research. The future goal is to better
understand all of the practical issues that will lead to optimal convergence of an

IRA-iteration.

1. Robust stopping criteria; especially for nonsymmetric eigenvalue problems. The
discussion of § 2.5 in Chapter 2 gave an indication of the importance of the better

understanding needed, especially the impact of the non-normality of A.

2. Practical convergence aspects/theory. Although Chapter 8 established a con-
nection between an IRA-iteration and shifted orthogonal iteration, more work is

required in order to determine near optimal adaptive selection of p relative to

k.

3. Reliability of an IRA-iteration. When successful, Algorithm 4.2 computes an
approximate invariant subspace of A of dimension k. However, there is no
guarantee that this is the wanted invariant subspace. For example, suppose the
wanted invariant subspace has an eigenvalue of multiplicity greater than one.
Does an IRA-iteration correctly resolve this multiplicity 7 We remark that all
numerical methods for computing a few eigenvalues for a nonsymmetric matrix

A face this dilemma.

4. Further investigation is needed to establish a direct connection between the
forward instability of an IRA-iteration and the sensitivity of reducing a matrix

to upper Hessenberg form via orthogonal transformations. Theorem 5.3 gives a
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geometrical interpretation of forward instability but a link with the Parlett and

Le [63] condition would be interesting.

. The generalized eigenvalue problem Az = BaA. This dissertation concentrated
on the case where B = I. When B is not the identity matrix, either A, B, or a
linear combination of the two must be factored. For symmetric A, the work of
Ericsson and Ruhe [30] considers the spectral transformation Lanczos method
which was further extended by Nour-Omid, Parlett, Ericsson and Jensen [56].
The ARPACK [49] software implements the techniques described in the latter
study. Saad [78] discusses the many difficulties that arise for the nonsyminetric
generalized eigenvalue problem. The recent work of Meerbergen and Spence [52]
discusses the special but important case of A nonsymmetric and B symmetric

positive semi-definite

. Preconditioning techniques for an IRA-iteration. The analysis and techniques
presented in this dissertation also serve to establish the viability of computing
approximations to selected portions of A’s spectrum using a preconditioner that
only needs matrix vector products. The motivation for using preconditioning for
eigenvalue problems is to allow faster and more robust convergence to selected
portions of A’s spectrum that are of interest. It is often observed that the
wanted eigenvalues are not those that the Arnoldi iteration naturally converges
towards. We first clarify the concept of preconditioning for eigenvalue problems.
A preconditioner F is a transformation on A that results in the matrix F(A). A
good preconditioner results if the Arnoldi/Lanczos iterations on F(A) converge

most rapidly towards the wanted eigenvalues of A under the transformation.

Among the most powerful preconditioners employed are those factoring and
solving linear systems with A. An important example is the shift and invert or
spectral transformation defined by F(A) = (A — ). The transformation has
the affect of transforming the eigenvalues of A closet to o into large and well
separated ones for F(A). The eigenvectors of F(A) are the same as those of A
and the eigenvalues are related through the transformation. Saad [78] discusses
shift and invert Arnoldi method for nonsymmetric eigenvalue problems. Ruhe
introduces and examines the use of rational preconditioners in the series of
papers [69, 70, 71]. The work of Meerbergen and Roose [51] presents an excellent

overview of preconditioning for the nonsymmetric eigenvalue problem.
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The primary drawback in using rational preconditioning is that linear systems
involving A require solution. This may prove quite inefficient and prohibitive in
many eigenproblems. Although the order of A is often the culprit, moderately
sized eigenvalue problems may involve dense matrices that are expensive both
to store and factor. This thesis demonstrates that it is often possible to con-
verge to the extremal portions of the spectrum of A using only matrix vector
products or employing a polynomial preconditioner. In these situations, the
expense of factoring and solving linear systems with A is avoided. The decision
in whether to use only polynomial preconditioning involves a tradeoff between
the number of matrix vector products versus the number of matrix factoriza-
tions and linear systems solutions that are required, respectively, for solution of
the eigen-problem. Further work is required in better understanding all these
issues as well as the impact of other shifting strategies besides the exact one
considered in this thesis. In particular, the use of an IRA-iteration for computing

approximations to the interior eigenvalues of A needs to be carefully examined.

. An evaluation of software for solving large sparse nonsymmetric eigenvalue prob-
lems. The last few years has seen a vigorous research effort in numerical methods
for large scale nonsymmetric eigenvalue problems. This effort is starting to be
realized in high quality software. However, a review and survey of the current
software and the algorithms implemented is needed. The motivation for under-
taking this study is to begin the critical review necessary to compare and test
the underlying algorithms used in the various software approaches and to better
understand where improvements are needed. The software approaches needing

review include:

o The block nonsymmetric Lanczos algorithm [6].

e The block Arnoldi algorithm [80].

e The rational Krylov algorithm of Ruhe [69, 70, T1].

e The ARPACK software package [49].

e The simultaneous iteration algorithm of Stewart and Jennings [91, 92].

o The two subspace iteration codes EA12 of Duff and Scott [28], and SRRIT
of Bai and Stewart [10].

Other important issue include comparing Algorithms 4.2 and 4.7 of Chapter 4.

Finally, a study comparing the performance of the codes in terms of storage
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requirements, execution times, and accuracy, and considering their suitability

for solving large-scale industrial problems is underway {48].
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